(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直
線傾斜角為,原點到該直線的距離為.
(1)求橢圓的方程;
(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;
(3)是否存在實數(shù)k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。
解:(Ⅰ)由, ,得,,
所以橢圓方程是:……………………3分
(Ⅱ)設MN:代入,得,
,由,得
,……………………6分
,,(舍去)
直線的方程為:……………………8分
(Ⅲ)將代入,得(*)
,為直徑的圓過,則,即
,又,,得
………①
,代入①解得……………11分
此時(*)方程存在,滿足題設條件.…………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點在軸上,長軸長是短軸長的兩倍,則的值為   ( ) 
     B           C  2           D  4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓內(nèi)有一點,為橢圓的右焦點,在橢圓上有一點
使的值最小,則此最小值為                (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)橢圓C:長軸為8離心率
(1)求橢圓C的標準方程;
(2)過橢圓C內(nèi)一點M(2,1)引一條弦,使弦被點M平分,
求這條弦所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線兩點.證明:以線段為直徑的圓恒過軸上的定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分13分)
已知橢圓的焦點為,, 
離心率為,直線軸,軸分別交于點,
(Ⅰ)若點是橢圓的一個頂點,求橢圓的方程;
(Ⅱ)若線段上存在點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F(c,0)為橢圓的右焦點,橢圓上的點與點F的距
離的最大值為M,最小值為m,則橢圓上與F點的距離是的點是
A.(B.(0,C.(D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P為橢圓上一點,F(xiàn)1、F2是橢圓的左、右焦點,若使△F1PF2為直角三角形的點P共有8個,則橢圓離心率的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的離心率為,若直線與其一個交點的橫坐標為,則的值為                

查看答案和解析>>

同步練習冊答案