【題目】已知函數(shù)

(1)求曲線在點(diǎn)()處的切線方程;

(2)證明:當(dāng)時(shí),。

【答案】(1) (2)見解析

【解析】

(1),由f′(0)=2,可得切線斜率k=2,即可得到切線方程;

(2)可得=﹣.可得f(x)在(﹣),(2,+∞)遞減,在(﹣,2)遞增,注意到a1時(shí),函數(shù)g(x)=ax2+x﹣1在(2,+∞)單調(diào)遞增,且g(2)=4a+1>0,只需(x)﹣e,即可.

(1)=﹣

f′(0)=2,即曲線y=f(x)在點(diǎn)(0,﹣1)處的切線斜率k=2,

曲線y=f(x)在點(diǎn)(0,﹣1)處的切線方程方程為y﹣(﹣1)=2x.

即2x﹣y﹣1=0為所求.

(2)證明:函數(shù)f(x)的定義域?yàn)椋篟,

可得=﹣

令f′(x)=0,可得,

當(dāng)x時(shí),f′(x)<0,x時(shí),f′(x)>0,x∈(2,+∞)時(shí),f′(x)<0.

f(x)在(﹣),(2,+∞)遞減,在(﹣,2)遞增,

注意到a1時(shí),函數(shù)g(x)=ax2+x﹣1在(2,+∞)單調(diào)遞增,且g(2)=4a+1>0

函數(shù)f(x)的圖象如下:

∵a≥1,∴,則≥﹣e,

∴f(x)≥﹣e,

當(dāng)a1時(shí),f(x)+e≥0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點(diǎn)有且只有四個(gè).類似的:在立體幾何中,與正四面體的六條棱所在直線的距離相等的點(diǎn) ( )

A. 有且只有一個(gè) B. 有且只有三個(gè) C. 有且只有四個(gè) D. 有且只有五個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在x=-1與x=2處都取得極值.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下資料是一位銷售經(jīng)理收集到的每年銷售額y(千元)和銷售經(jīng)驗(yàn)x(年)的關(guān)系:

銷售經(jīng)驗(yàn)x/年

1

3

4

4

6

8

10

10

11

13

年銷售額y/千元

80

97

92

102

103

111

119

123

117

136

(1)依據(jù)這些數(shù)據(jù)畫出散點(diǎn)圖并作直線=78+4.2x,計(jì)算;

(2)依據(jù)這些數(shù)據(jù)求回歸直線方程并據(jù)此計(jì)算;

(3)比較(1) (2)中的殘差平方和的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明:對(duì)任意的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在常數(shù),使得數(shù)列滿足對(duì)一切恒成立,則稱為“可控?cái)?shù)列”.

(1) 若數(shù)列的通項(xiàng)公式為,試判斷數(shù)列是否為“可控?cái)?shù)列”?并說(shuō)明理由;

(2) 是首項(xiàng)為5的“可控?cái)?shù)列”,且單調(diào)遞減,問是否存在常數(shù),使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;

(3) 若“可控?cái)?shù)列”的首項(xiàng)為2,,求不同取值的個(gè)數(shù)及最大值.(直接寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,斜邊可以通過(guò)以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角,動(dòng)點(diǎn)在斜邊上.

(1)當(dāng)DAB的中點(diǎn)時(shí),求異面直線AOCD所成角的正切值;

(2)求CD與平面AOB所成角的正切值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|x+1|.
(1)求函數(shù)f(x)的值域M;
(2)若a∈M,試比較|a﹣1|+|a+1|, , 的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案