【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里( )
A.156里
B.84里
C.66里
D.42里
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下有四種說法,其中正確說法的個(gè)數(shù)為:
(1)命題“若am2<bm2”,則“a<b”的逆命題是真命題
(2)“a>b”是“a2>b2”的充要條件;
(3) “x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“”是“”的必要不充分條件.
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sin(x+ ),1), =(4,4cosx﹣ )
(1)若 ⊥ ,求sin(x+ )的值;
(2)設(shè)f(x)= ,若α∈[0, ],f(α﹣ )=2 ,求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知過點(diǎn)的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z1=(a2-4sin2θ)+(1+2cos θ)i,a∈R,θ∈(0,π),z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,且z=-3+4i.
(1)求z2及|z2|.
(2)若z1=z2,求θ與a2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若分別是橢圓的左、右焦點(diǎn),過的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)=a+ (a,b∈R)有最大值和最小值,且最大值與最小值之和為6,則3a﹣2b=( )
A.7
B.8
C.9
D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com