精英家教網 > 高中數學 > 題目詳情

【題目】已知函數在x=-1與x=2處都取得極值.

(1)求的值及函數的單調區(qū)間;

(2)若對,不等式恒成立,求c的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)函數在極值點的導數為零,利用,再利用導數的正負求其單調區(qū)間(2)利用函數單調性,分析的最大值,只需即可.

(1)f′(x)=3x2+2ax+b,由題意得

解得

∴f(x)=x3x2-6x+c,f′(x)=3x2-3x-6.

令f′(x)<0,解得-1<x<2;

令f′(x)>0,解得x<-1或x>2.

∴f(x)的減區(qū)間為(-1,2),

增區(qū)間為(-∞,-1),(2,+∞).

(2)由(1)知,f(x)在(-∞,-1)上單調遞增;在(-1,2)上單調遞減;在(2,+∞)上單調遞增.

∴x∈時,f(x)的最大值即為:f(-1)與f(3)中的較大者.

f(-1)=+c,f(3)=-+c.

∴當x=-1時,f(x)取得最大值.

要使f(x)+c<c2,只需c2>f(-1)+c,即2c2>7+5c,解得c<-1或c>.

∴c的取值范圍為(-∞,-1)∪.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓過點,且圓心在直線上,過點的直線交圓兩點,過點分別做圓的切線,記為.

Ⅰ)求圓的方程;

Ⅱ)求證:直線的交點都在同一條直線上,并求出這條直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.

(1)根據以上數據建立一個2×2的列聯(lián)表;

(2)根據所給的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?附:獨立檢驗臨界值表

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(12分)
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數,求X的分布列與數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sin(x+ ),1), =(4,4cosx﹣
(1)若 ,求sin(x+ )的值;
(2)設f(x)= ,若α∈[0, ],f(α﹣ )=2 ,求cosα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某書店共有韓寒的圖書6種,其中價格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據統(tǒng)計每套的售價與每天的銷售數量如下表所示:

售價x/元

105

108

110

112

銷售數量y/套

40

30

25

15

(1)根據上表,利用最小二乘法得到回歸直線方程,求;

(2)若售價為100元,則每天銷售的套數約為多少(結果保留到整數)?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求曲線在點()處的切線方程;

(2)證明:當時,。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017年10月18日至24日,中國共產黨第十九次全國人民代表大會在北京順利召開.大會期間,北京某高中舉辦了一次“喜迎十九大”的讀書讀報知識競賽,參賽選手為從高一年級和高二年級隨機抽取的各100名學生.圖1和圖2分別是高一年級和高二年級參賽選手成績的頻率分布直方圖.

(1)分別計算參加這次知識競賽的兩個年級學生的平均成績;

(2)若稱成績在68分以上的學生知識淵博,試以上述數據估計該高一、高二兩個年級學生的知識淵博率;

(3)完成下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下,認為高一、高二兩個年級學生這次讀書讀報知識競賽的成績有差異.

分類

成績低于60分人數

成績不低于60分人數

總計

高一年級

高二年級

總計

附:

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

K2.

查看答案和解析>>

同步練習冊答案