2013年我國(guó)汽車擁有量已超過2億(目前只有中國(guó)和美國(guó)超過2億),為了控制汽車尾氣對(duì)環(huán)境的污染,國(guó)家鼓勵(lì)和補(bǔ)貼購(gòu)買小排量汽車的消費(fèi)者,同時(shí)在部分地區(qū)采取對(duì)新車限量上號(hào).某市采取對(duì)新車限量上號(hào)政策,已知2013年年初汽車擁有量為=100萬(wàn)輛),第年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為,該年的增長(zhǎng)量的乘積成正比,比例系數(shù)為其中=200萬(wàn).
(1)證明:;
(2)用表示;并說明該市汽車總擁有量是否能控制在200萬(wàn)輛內(nèi).

(1)詳見解析;(2),能.

解析試題分析:(1)先由條件列出,再證明,將=200代入,化簡(jiǎn)后得到的顯然成立.從而證明的本題;(2)由代入.即用表示了.再用數(shù)學(xué)歸納法證明即可.
試題解析:(1)依題                           2分
 只需證明,即證.
上式顯然成立,所以.                               5分
(2),所以
按該政策可以將該市汽車總擁有量控制在200萬(wàn)輛內(nèi),即.       6分
證明如下:當(dāng)時(shí),,顯然成立.
假設(shè)時(shí),成立.
則當(dāng)時(shí) ,是關(guān)于的一個(gè)二次函數(shù),

其對(duì)稱軸,所以
,即.
綜上所述,成立.即該市汽車總擁有量是否能控制在200萬(wàn)輛內(nèi).      13分
考點(diǎn):1.數(shù)列的遞推公式;2.不等式;3.數(shù)學(xué)歸納法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的首項(xiàng),
求數(shù)列的通項(xiàng)公式;
設(shè)的前項(xiàng)和為,若的最小值為,求的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足.
(1)若是等差數(shù)列,求證:為等差數(shù)列;
(2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi) 的整點(diǎn)個(gè)數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1) 求證:數(shù)列{an}的通項(xiàng)公式是an=3n(n∈N*).
(2) 記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn.若對(duì)于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{}滿足-2=0,n∈N﹡,且是a2,a4的等差中項(xiàng).
(1)求數(shù)列{}的通項(xiàng)公式;
(2)若,=b1+b2+…+,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,其中N*.
(Ⅰ)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于N*恒成立,若存在,求出的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足遞推式:
(Ⅰ)若,求的遞推關(guān)系(用表示);
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上.
(1)求的解析式;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案