【題目】在平面直角坐標(biāo)系中,設(shè)的頂點(diǎn)分別為,圓是的外接圓,直線的方程是.
(1)求圓的方程;
(2)證明:直線與圓相交;
(3)若直線被圓截得的弦長為3,求的方程.
【答案】(1);(2)證明見解析;(3)或.
【解析】
(1)求出邊AC、BC的垂直平分線方程,根據(jù)圓心M在這2條邊的垂直平分線上,可得M(,),再求出半徑MC的值,即可得到圓的標(biāo)準(zhǔn)方程.(2)根據(jù)直線l經(jīng)過定點(diǎn)N,而點(diǎn)N在圓的內(nèi)部,即可得到直線和圓相交.(3)由條件利用弦長公式求得圓心M(,)到直線l的距離為d=.再根據(jù)據(jù)點(diǎn)到直線的距離公式求得m的值,可得直線l的方程.
(1)∵△ABC的頂點(diǎn)分別為A(0,2),B(﹣1,0),C(2,0),故線段BC的垂直平分線方程為x=,
線段AC的垂直平分線為 y=x,再由圓心M在這2條邊的垂直平分線上,可得M(,),
故圓的半徑為|MC|==,故圓的方程為+=.
(2)根據(jù)直線l的方程是(2+m)x+(2m﹣1)y﹣3m﹣1=0(m∈R),即m(x+2y﹣3)+2x﹣y﹣1=0,
由可得,故直線經(jīng)過定點(diǎn)N(1,1).
由于MN==<r=,故點(diǎn)N在圓的內(nèi)部,故圓和直線相交.
(3)∵直線l被圓M截得的弦長為3,
故圓心M(,)到直線l的距離為d==.
再根據(jù)點(diǎn)到直線的距離公式可得=,求得 m=﹣2,或m=,
故直線l的方程為y=1或x=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐中,為中點(diǎn),為中點(diǎn),且為正三角形.
(I)求證:平面;
(II)求證:平面平面;
(III)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)拋物線的焦點(diǎn)是橢圓的上頂點(diǎn);
(2)橢圓的焦距是8,離心率等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計(jì)劃在此基礎(chǔ)上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設(shè)x,y分別表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤為3萬元;生產(chǎn)1車皮乙種肥料,利潤為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得+x0+1<0”,則p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩直線的傾斜角分別為 與,則下列四個命題中正確的是( )
A. 若<,則兩直線的斜率:k1 < k2 B. 若=,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com