若圓C以拋物線y2=4x的焦點為圓心,且與拋物線的準線相切,則該圓的標準方程是______.
拋物線y2=4x的焦點(1,0),準線方程為:x=-1,
∴以拋物線y2=4x的焦點為圓心,并且與此拋物線的準線相切的圓的半徑是2,
∴以拋物線y2=4x的焦點為圓心,并且與此拋物線的準線相切的圓的方程為;(x-1)2+y2=4,
故答案為:(x-1)2+y2=4.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知實數(shù)滿足,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在單位正方形ABCD(邊長為1個單位長度的正方形,如圖所示)所在的平面上有點P滿足條件|PA|2+|PB|2=|PC|2,試求點P到點D的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩點A(9,4)和B(3,6),則以AB為直徑的圓的方程為( 。
A.(x-6)2+(y-5)2=10B.(x+6)2+(y+5)2=10
C.(x-5)2+(y-6)2=10D.(x+5)2+(y+6)2=10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

圓:x2+y2-2x+4y-1=0的圓心坐標是( 。
A.(2,-4)B.(-2,4)C.(1,-2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C的圓心C為(-3,4),且與x軸相切.
(1)求圓C的標準方程;
(2)若關于直線y=k(x-1)對稱的兩點M,N均在圓C上,且直線MN與圓x2+y2=2相切,試求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=4x的焦點F的直線與拋物線相交于A,B兩點,自A,B向準線作垂線,垂足分別為A1、B1,則焦點F與以線段A1B1為直徑的圓C之間的位置關系是( 。
A.焦點F在圓C上
B.焦點F在圓C內(nèi)
C.焦點F在圓C外
D.隨直線AB的位置改變而改變

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l過點A(-6,7)與圓C:x2+y2-8x+6y+21=0相切,
(1)求該圓的圓心坐標及半徑長
(2)求直線l的方程.

查看答案和解析>>

同步練習冊答案