(本小題滿分13分)已知函數(shù)學科(1)求;(2)已知數(shù)列滿足,,求數(shù)列的通項公式;(3) 求證:.

(1); (2)
:解:(1)因為
所以設(shè)S=(1)
S=……….(2)(1)+(2)得:
   =,  所以S=3012
(2)由兩邊同減去1,得
所以,
所以,是以2為公差以為首項的等差數(shù)列,
所以
(3)因為
所以
所以
>
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分共13分)已知正項數(shù)列,函數(shù)。(1)若正項數(shù)列滿足),試求出由此歸納出通項,并證明之;(2)若正項數(shù)列滿足),數(shù)列滿足,其和為,求證。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)向量a =(),b =()(),函數(shù) a·b在[0,1]上的最小值與最大值的和為,又數(shù)列{}滿足:
(1)求證:
(2)求的表達式;
(3),試問數(shù)列{}中,是否存在正整數(shù),使得對于任意的正整數(shù),都有成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)+的圖象通過原點,對稱軸為的導(dǎo)函數(shù),且 .
(I)求的表達式;
(II)若數(shù)列滿足,且,求數(shù)列的通項公式;
(III)若,是否存在自然數(shù)M,使得當
恒成立?若存在,求出最小的M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知是正數(shù)組成的數(shù)列,,且點()(nN*)在函數(shù)的圖象上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若數(shù)列滿足,,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a6=55,   a2+a7=16.
(Ⅰ)求數(shù)列{an}的通項公式:
(Ⅱ)若數(shù)列{an}和數(shù)列{bn}滿足等式:an,求數(shù)列{bn}的前n項和Sn    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分.
已知是公差為的等差數(shù)列,是公比為的等比數(shù)列.
(1)      若,是否存在,有說明理由;
(2)      找出所有數(shù)列,使對一切,,并說明理由;
(3)      若試確定所有的,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等差數(shù)列{}前n項和為。已知+-=0,=38,則m=_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè) ,則對任意正整數(shù)都成立的是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案