【題目】已知點為圓心的圓與軸交于與軸交與,其中為原點.
(1)求證:的面積為定值;
(2)設(shè)直線與圓交于點,若,求圓的方程.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)求出半徑,寫出圓的方程,再解出的坐標(biāo),利用直角三角形面積公式用表示出面積,消去即可;(2)由,可得垂直平分線段,求出的斜率,可得出的方程,解出的值,直線與圓交于點,判斷是否符合要求,即可得圓的方程.
試題解析:∵圓C過原點O,∴r2=t2+. 設(shè)圓C的方程是(x-t)2+=t2+,令x=0,得y1=0,y2=;令y=0,得x1=0,x2=2t.∴S△OAB=OA×OB=××|2t|=4,即△OAB的面積為定值.
(2)解 ∵OM=ON,CM=CN,∴OC垂直平分線段MN.∵kMN=-2,∴kOC=.
∴直線OC的方程是y=x.∴=t.解得t=2或t=-2.
當(dāng)t=2時,圓心C的坐標(biāo)為(2,1),OC=,此時C到直線y=-2x+4的距離d=,
圓C與直線y=-2x+4相交于兩點.當(dāng)t=-2時,圓心C的坐標(biāo)為(-2,-1),OC=,
此時C到直線y=-2x+4的距離d=,圓C與直線y=-2x+4不相交,∴t=-2不符合題意,舍去.∴圓C的方程為(x-2)2+(y-1)2=5.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計公式分別為: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等差數(shù)列中, , 是它的前項和,.
(1)求;
(2)這個數(shù)列的前多少項的和最大,并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,點O為坐標(biāo)原點,點 ,向量 =(0,1),θn是向量 與 的夾角,則使得 恒成立的實 數(shù)t的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知關(guān)于的不等式.
(1)當(dāng)時,求此不等式的解集.
(2)求關(guān)于的不等式(其中)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過定點P(1,1),且傾斜角為 ,以坐標(biāo)原點為極點,x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為 .
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若 ,求函數(shù) 的極小值;
(2)設(shè)函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(3)若在區(qū)間 上存在一點 ,使得 成立,求 的取值范圍,( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com