【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , = ﹣ .
【答案】解:(Ⅰ)由題所給的數(shù)據(jù)樣本平均數(shù) = =4, = =4.3.
∴ (xi﹣ )(yi﹣ )=(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+0+1×0.5+2×0.9+3×1.6=14
(xi﹣ )2=9+4+4+0+1+4+9=28.
∴ = =
∴ =4.3﹣ ×4=2.3,
∴y關(guān)于x的線性回歸方程為:y= x+2.3.
(Ⅱ)由(Ⅰ)可得線性回歸方程為y= x+2.3.
2017年人均純收入,即x=8,可得y= (萬元).
即預(yù)測該村2017年人均純收入為6.3萬元.
【解析】(Ⅰ)利用公式求出,,從而可得y關(guān)于x的線性回歸方程;(Ⅱ)利用(I)的線性回歸方程,代入 x=8,可得該村2017年人均純收入.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: (a>b>0)過點(diǎn)( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點(diǎn),橢圓E內(nèi)部的動點(diǎn)P使|PM|、|PO|、|PN|成等比數(shù)列,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為( )
A.200π
B.50π
C.100π
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時間3月10日,CBA半決賽開打,采用7局4勝制(若某對取勝四場,則終止本次比賽,并獲得進(jìn)入決賽資格),采用2﹣3﹣2的賽程,遼寧男籃將與新疆男籃爭奪一個決賽名額,由于新疆隊(duì)常規(guī)賽占優(yōu),決賽時擁有主場優(yōu)勢(新疆先兩個主場,然后三個客場,再兩個主場),以下是總決賽賽程:
日期 | 比賽隊(duì) | 主場 | 客場 | 比賽時間 | 比賽地點(diǎn) |
17年3月10日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月12日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月15日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月17日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月19日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月22日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月24日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
(1)若考慮主場優(yōu)勢,每個隊(duì)主場獲勝的概率均為 ,客場取勝的概率均為 ,求遼寧隊(duì)以比分4:1獲勝的概率;
(2)根據(jù)以往資料統(tǒng)計(jì),每場比賽組織者可獲得門票收入50萬元(與主客場無關(guān)),若不考慮主客場因素,每個隊(duì)每場比賽獲勝的概率均為 ,設(shè)本次半決賽中(只考慮這兩支隊(duì))組織者所獲得的門票收入為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期為 ,且當(dāng) 時, 取得最大值 .
(1)求 的解析式及單調(diào)增區(qū)間;
(2)若 ,且 ,求 ;
(3)將函數(shù) 的圖象向右平移 ( )個單位長度后得到函數(shù) 是偶函數(shù),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=ex+mx2﹣m(m>0),當(dāng)x1+x2=1時,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實(shí)數(shù)x1的取值范圍是( )
A.(﹣∞,0)
B.
C.
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xlnx+ax,a∈R.
(1)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓心的圓與軸交于與軸交與,其中為原點(diǎn).
(1)求證:的面積為定值;
(2)設(shè)直線與圓交于點(diǎn),若,求圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com