【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若,其中為自然對(duì)數(shù)的底數(shù),求證:函數(shù)有2個(gè)不同的零點(diǎn);
(3)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.
【答案】(1) 在單調(diào)遞增,在單調(diào)遞減. (2)證明見(jiàn)解析; (3)2
【解析】
(1)求得函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)值的符號(hào),即可求得函數(shù)的單調(diào)區(qū)間;
(2)由(1)的結(jié)論,求得函數(shù)的極大值,再結(jié)合實(shí)數(shù)與的關(guān)系,即可作出證明;
(3)設(shè),求得,利用,求得函數(shù)在時(shí)單調(diào)遞增,進(jìn)而分和討論,即可求解,得到結(jié)論.
(1)由題意,函數(shù),可得,
當(dāng)時(shí),,在單調(diào)遞增;
當(dāng)時(shí),令,則,令,則,
所以在單調(diào)遞增,在單調(diào)遞減.
(2)由(1)可知,當(dāng)時(shí),函數(shù)的最大值為:
,
因?yàn)?/span>,所以,因此有,
因?yàn)?/span>,所以,因此當(dāng)時(shí),函數(shù)有唯一零點(diǎn);
因?yàn)?/span>,所以,,
故函數(shù)在時(shí),必有唯一的零點(diǎn),因此函數(shù)有2個(gè)不同的零點(diǎn);
(3)設(shè),,
,因?yàn)?/span>,所以函數(shù)在時(shí)單調(diào)遞增,
即
當(dāng)時(shí),即,時(shí),,函數(shù)在時(shí)單調(diào)遞增,因此有,即當(dāng)時(shí),恒成立;
當(dāng)時(shí),所以存在,使得,
即當(dāng)時(shí),函數(shù)單調(diào)遞減,所以此時(shí),
顯然對(duì)于當(dāng)時(shí),不恒成立,
綜上所述,,所以實(shí)數(shù)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程;
(2)函數(shù)在區(qū)間上有零點(diǎn),求的值;
(3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生鮮批發(fā)店每天從蔬菜生產(chǎn)基地以5元/千克購(gòu)進(jìn)某種綠色蔬菜,售價(jià)8元/千克,若每天下午4點(diǎn)以前所購(gòu)進(jìn)的綠色蔬菜沒(méi)有售完,則對(duì)未售出的綠色蔬菜降價(jià)處理,以3元/千克出售.根據(jù)經(jīng)驗(yàn),降價(jià)后能夠把剩余蔬菜全部處理完畢,且當(dāng)天不再進(jìn)貨.該生鮮批發(fā)店整理了過(guò)往30天(每天下午4點(diǎn)以前)這種綠色蔬菜的日銷(xiāo)售量(單位:千克)得到如下統(tǒng)計(jì)數(shù)據(jù)(視頻率為概率)(注:x,y∈N*)
每天下午4點(diǎn)前銷(xiāo)售量 | 350 | 400 | 450 | 500 | 550 |
天數(shù) | 3 | 9 | x | y | 2 |
(1)求在未來(lái)3天中,至少有1天下午4點(diǎn)前的銷(xiāo)售量不少于450千克的概率.
(2)若該生鮮批發(fā)店以當(dāng)天利潤(rùn)期望值為決策依據(jù),當(dāng)購(gòu)進(jìn)450千克比購(gòu)進(jìn)500千克的利潤(rùn)期望值大時(shí),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖象關(guān)于直線對(duì)稱(chēng),為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)( )
A.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變
B.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變
C.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變
D.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若,求的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營(yíng),打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).
(1)試將公路的長(zhǎng)度表示為的函數(shù),并寫(xiě)出的取值范圍;
(2)試確定的值,使得公路的長(zhǎng)度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(),點(diǎn)在的焦點(diǎn)的右側(cè),且到的準(zhǔn)線的距離是到距離的3倍,經(jīng)過(guò)點(diǎn)的直線與拋物線交于不同的、兩點(diǎn),直線與直線交于點(diǎn),經(jīng)過(guò)點(diǎn)且與直線垂直的直線交軸于點(diǎn).
(1)求拋物線的方程和的坐標(biāo);
(2)判斷直線與直線的位置關(guān)系,并說(shuō)明理由;
(3)橢圓的兩焦點(diǎn)為、,在橢圓外的拋物線上取一點(diǎn),若、的斜率分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓:()和雙曲線:(),記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.
(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;
(2)若,且,求實(shí)數(shù)的值;
(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在與正實(shí)數(shù),使得成立,則稱(chēng)函數(shù)在處存在距離為的對(duì)稱(chēng)點(diǎn),把具有這一性質(zhì)的函數(shù)稱(chēng)之為“型函數(shù)”.
(1)設(shè),試問(wèn)是否是“型函數(shù)”?若是,求出實(shí)數(shù)的值;若不是,請(qǐng)說(shuō)明理由;
(2)設(shè)對(duì)于任意都是“型函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com