【題目】已知函數(shù) .
(1)若,求的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較與的大小,并證明你的結(jié)論.
【答案】(1)0;(2)見(jiàn)解析;(3)見(jiàn)證明.
【解析】
(1)a=1時(shí),f(x)=|x﹣1|﹣lnx,將絕對(duì)值符號(hào)化去,分類(lèi)討論,再求導(dǎo)函數(shù),即可確定函數(shù)的單調(diào)區(qū)間,進(jìn)而可得f(x)的最小值;
(2)將絕對(duì)值符號(hào)化去,分類(lèi)討論,再求導(dǎo)函數(shù),即可確定函數(shù)的單調(diào)區(qū)間;
(3)由(1)可知,lnx≤x﹣1,從而,令x=n2,可得,再進(jìn)行疊加,利用放縮法,即可證得結(jié)論成立.
(1) 當(dāng)時(shí),, 在上是遞增.
當(dāng)時(shí),,.在上是遞減.
故時(shí), 的增區(qū)間為,減區(qū)間為,.
(2) ①若,
當(dāng)時(shí),,,則在區(qū)間上是遞增的;
當(dāng)時(shí),,,則在區(qū)間上是遞減的
②若,
當(dāng)時(shí),,
,
則在上是遞增的, 在上是遞減的;
當(dāng)時(shí), ,
在區(qū)間(0,a)上是遞減的,而在x=a處有意義;
則在區(qū)間上是遞增的,在區(qū)間(0,1)上是遞減的
綜上: 當(dāng)時(shí), 的遞增區(qū)間是,遞減區(qū)間是(0,a);
當(dāng),的遞增區(qū)間是,遞減區(qū)間是(0,1)
(3)由(1)可知,當(dāng)a=1,x時(shí),有
即,
則有+
,
故:+ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則方程()的實(shí)數(shù)根個(gè)數(shù)不可能為( )
A. 5個(gè) B. 6個(gè) C. 7個(gè) D. 8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的右焦點(diǎn),點(diǎn)在上,且軸.
(1)求的方程;
(2)過(guò)的直線交于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷中正確的是( )
A. “若,則有實(shí)數(shù)根”的逆否命題是假命題
B. “”是“直線與直線平行”的充要條件
C. 命題“”是真命題
D. 已知命題,使得;命題,則是真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));以原點(diǎn)極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
⑴ 求曲線的普通方程與曲線的直角坐標(biāo)方程;
⑵ 試判斷曲線與是否存在兩個(gè)交點(diǎn),若存在求出兩交點(diǎn)間的距離;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和為S3=.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若函數(shù)的值域?yàn)?/span>,求實(shí)數(shù)a的取值范圍;
(3)設(shè),若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com