【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
【答案】(1) ;(2) .
【解析】試題分析:(1)根據(jù)等差數(shù)列的基本量運算解出和,代入公式算出等差數(shù)列的通項公式;(2)計算出等比數(shù)列的首項和公比,代入求和公式計算.
試題解析:
(1)設{an}的公差為d,由已知得
解得a1=1,d=,
故{an}的通項公式an=1+,即an=.
(2)由(1)得b1=1,b4=a15==8.
設{bn}的公比為q,則q3==8,從而q=2,
故{bn}的前n項和Tn==2n-1.
點睛:本題考查等差數(shù)列的基本量運算求通項公式以及等比數(shù)列的前n項和,屬于基礎題. 在數(shù)列求和中,最常見最基本的求和就是等差數(shù)列、等比數(shù)列中的求和,這時除了熟練掌握求和公式外還要熟記一些常見的求和結論,再就是分清數(shù)列的項數(shù),比如題中給出的,以免在套用公式時出錯.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A、B、C三點滿足 = + .
(1)求證:A、B、C三點共線;
(2)求 的值;
(3)已知A(1,cosx)、B(1+cosx,cosx),x∈[0, ],f(x)= ﹣(2m+ )| |的最小值為﹣ ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選課意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果如下.
圖中,課程為人文類課程,課程為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組”).
(Ⅰ)在“組”中,選擇人文類課程和自然科學類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學營活動,學校要求:參加活動的學生只能是“組”中選擇課
程或課程的同學,并且這些同學以自愿報名繳費的方式參加活動. 選擇課程的學生中有人參加科學營活動,每人需繳納元,選擇課程的學生中有人參加該活動,每人需繳納元.記選擇課程和課程的學生自愿報名人數(shù)的情況為,參加活動的學生繳納費用總和為元.
①當時,寫出的所有可能取值;
②若選擇課程的同學都參加科學營活動,求元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為( )
A.63.6萬元
B.67.7萬元
C.65.5萬元
D.72.0萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}滿足a3=5,a10=-9.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及使得Sn最大的序號n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=5 + 的定義域為( )
A.{x|1<x≤2}
B.{x|1≤x≤2}
C.{x|x≤2且x≠1}
D.{x|x≥0且x≠1}
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com