【題目】設f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為

【答案】-10
【解析】解:∵f(x)是定義在R上且周期為2的函數(shù),f(x)= ,

∴f( )=f(﹣ )=1﹣ a,f( )= ;又 = ,

∴1﹣ a=

又f(﹣1)=f(1),

∴2a+b=0,②

由①②解得a=2,b=﹣4;

∴a+3b=﹣10.

故答案為:﹣10.

由于f(x)是定義在R上且周期為2的函數(shù),由f(x)的表達式可得f( )=f(﹣ )=1﹣a=f( )= ;再由f(﹣1)=f(1)得2a+b=0,解關于a,b的方程組可得到a,b的值,從而得到答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是某市有關部門根據(jù)對當?shù)馗刹康脑率杖肭闆r調(diào)查后畫出的樣本頻率分布直方圖,已知圖中從左向右第一組的頻數(shù)為4 000.在樣本中記月收入(單位:元)在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000),[3 000,3 500),[3 500,4 000)的人數(shù)依次為A1,A2,…,A6.是統(tǒng)計月工資收入在一定范圍內(nèi)的人數(shù)的算法流程圖,則樣本的容量n=_____,輸出的S=_____.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|﹣|x|﹣2 (Ⅰ)解不等式f(x)≥0
(Ⅱ)若存在實數(shù)x,使得f(x)≤|x|+a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R).
(1)當m=﹣1時,求不等式f(x)≤2的解集;
(2)設關于x的不等式f(x)≤|2x+1|的解集為A,且[1,2]A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的一個頂點為A(2,3),兩條高所在直線方程為x-2y+3=0和xy-4=0,求△ABC三邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法: ①分類變量A與B的隨機變量K2越大,說明“A與B有關系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關關系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量

的單調(diào)遞減區(qū)間;

)若,求 的值;

)將函數(shù)的圖象向右平移個單位得到的圖象,若函數(shù)上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案