【題目】圖①是某市有關(guān)部門根據(jù)對當(dāng)?shù)馗刹康脑率杖肭闆r調(diào)查后畫出的樣本頻率分布直方圖,已知圖中從左向右第一組的頻數(shù)為4 000.在樣本中記月收入(單位:元)在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000),[3 000,3 500),[3 500,4 000)的人數(shù)依次為A1,A2,…,A6.圖②是統(tǒng)計月工資收入在一定范圍內(nèi)的人數(shù)的算法流程圖,則樣本的容量n=_____,輸出的S=_____.(用數(shù)字作答)
圖①
圖②
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對x∈R,恒有f(x)>|3a﹣1|成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個結(jié)論: ①若x>0,則x>sinx恒成立;
②“若am2<bm2 , 則a<b”的逆命題為真命題
③m∈R,使f(x)=(m﹣1)x 是冪函數(shù),且在(﹣∞,0)上單調(diào)遞減
④對于命題p:x∈R使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0
其中正確結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系下,已知曲線C1:ρ=cosθ+sinθ和曲線C2:ρsin(θ﹣ )= .
(1)求曲線C1和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時,求曲線C1和曲線C2公共點的一個極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一同學(xué)在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前55個圈中的●的個數(shù)是( )
A.10
B.9
C.8
D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c.已知cosC=.
(1)若,求△ABC的面積;
(2)設(shè)向量,,且,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當(dāng)a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com