【題目】已知下列命題:
①若直線與平面有兩個公共點,則直線在平面內(nèi);
②若直線上有無數(shù)個點不在平面內(nèi),則;
③若直線與平面相交,則與平面內(nèi)的任意直線都是異面直線;
④如果兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;
⑤若直線與平面平行,則與平面內(nèi)的直線平行或異面;
⑥若平面平面,直線,直線,則直線.
上述命題正確的是__________.(請把所有正確命題的序號填在橫線上)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸, 建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中, 直線經(jīng)過點,傾斜角.
(1)寫出曲線直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點, 求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸為正半軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù)).
(1)求圓的直角坐標(biāo)方程;
(2)求直線分圓所得的兩弧程度之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}共有2k項(),數(shù)列{an}的前n項和為Sn,滿足:a1 = 2,an1 = (p 1) Sn 2(n = 1,2,…, 2k1),其中常數(shù)p > 1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若,數(shù)列{bn }滿足(n = 1,2,…, 2k),求數(shù)列
{bn }的通項公式;
(3)對于(2)中數(shù)列{bn },求和Tn = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)的圖象與x軸的任意兩個相鄰交點間的距離為,當(dāng)時,函數(shù)取得最大值.
(1)求函數(shù)的解析式,并寫出它的單調(diào)增區(qū)間;
(2)若,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,三個函數(shù)的定義域均為集合.
(1)若,試判斷集合與的關(guān)系,并說明理由;
(2)記,是否存在,使得對任意的實數(shù),函數(shù)有且僅有兩個零點?若存在,求出滿足條件的最小正整數(shù);若不存在,說明理由.(以下數(shù)據(jù)供參考:,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com