【題目】設直線l的方程為,圓O的方程為

(1)當m取一切實數(shù)時,直線l與圓O都有公共點,求r的取值范圍;

(2)當時,直線與圓O交于M,N兩點,若,求實數(shù)t的取值范圍.

【答案】(1)2

【解析】

(1)由直線l的方程可得(y﹣1)m+x﹣1=0,可知直線l過定點P(1,1),要直線l與圓O都有公共點,只要P點在圓內(nèi)或圓上,即12+12r2,求解即可得答案;

(2)設弦MN的中點為E,則,由垂徑定理可得MN2=4ME2=4(OM2OE2),結(jié)合已知條件可得OE2≥9(OM2OE2),求解可得,又OE2<5,求解即可得答案.

(1)直線的方程整理可得,所以過定點,

要直線與圓都有公共點,只要點在圓內(nèi)或者圓上,即,

,所以.

(2)設弦的中點為,則.

由垂徑定理可得,

所以,即為,

,

,

所以,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為且對任意的. ,.

(1)求并證明的奇偶性;

(2)判斷的單調(diào)性并證明;

(3);若對任意恒成立求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形中, , 交于點,現(xiàn)將沿折起得到三棱錐, , 分別是, 的中點.

(1)求證:

(2)若三棱錐的最大體積為,當三棱錐的體積為,且為銳角時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動.為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個小組中隨機抽取10名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:

(1)從參加問卷調(diào)查的10名學生中隨機抽取兩名,求這兩名學生來自同一個小組的概率;

(2)在參加問卷調(diào)查的10名學生中,從來自甲、丙兩個小組的學生中隨機抽取兩名,用表示抽得甲組學生的人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,底面ABCD為矩形,DP⊥平面PBC,E,F(xiàn)分別為PA與BC的中點.

(1)求證:BC⊥平面PDC;

(2)求證:EF//平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù),,,給出下列命題,其中真命題是(

A.”是“”的充要條件B.”是“”的充分條件

C.”是“”的必要條件D.是無理數(shù)”是“是無理數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某年級的聯(lián)歡會上設計了一個摸獎游戲,在一個口袋中裝有3個紅球和7個白球,這些球除顏色外完全相同,一次從中摸出3個球.

(1)設表示摸出的紅球的個數(shù),求的分布列和數(shù)學期望;

(2)為了提高同學們參與游戲的積極性,參加游戲的同學每人可摸球兩次,每次摸球后放回,若規(guī)定兩次共摸出紅球的個數(shù)不少于,且中獎概率大于60%時,即中獎,求的最大值.

查看答案和解析>>

同步練習冊答案