【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng).為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)小組中隨機(jī)抽取10名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:
(1)從參加問卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名,求這兩名學(xué)生來自同一個(gè)小組的概率;
(2)在參加問卷調(diào)查的10名學(xué)生中,從來自甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取兩名,用表示抽得甲組學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.
【答案】(1);(2)答案見解析.
【解析】試題分析:(1)從參加問卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名的取法共有種,來自同一小組的取法共有,所以.(2)的可能取值為0,1,2,
,,,寫出分布列,求出期望。
試題解析:
(1)由已知得,問卷調(diào)查中,從四個(gè)小組中抽取的人數(shù)分別為3,4,2,1,
從參加問卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名的取法共有種,
這兩名學(xué)生來自同一小組的取法共有,
所以.
(2)由(1)知,在參加問卷調(diào)查的10名學(xué)生中,來自甲、丙兩小組的學(xué)生人數(shù)分別為3,2.
的可能取值為0,1,2,
,,.
∴的分布列為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù),上的最小值,并確定取得最小值時(shí)的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 14 | 7 | 5.34 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | … |
(1)觀察表中值隨值變化趨勢特點(diǎn),請(qǐng)你直接寫出函數(shù),的單調(diào)區(qū)間,并指出當(dāng)取何值時(shí)函數(shù)的最小值為多少;
(2)用單調(diào)性定義證明函數(shù)在上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·江西聯(lián)考]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,.某同學(xué)家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對(duì)稱;丁:不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯(cuò)誤的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圖像過點(diǎn),且在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+1,那么不等式2f(x)﹣1<0的解集是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為,圓O的方程為.
(1)當(dāng)m取一切實(shí)數(shù)時(shí),直線l與圓O都有公共點(diǎn),求r的取值范圍;
(2)當(dāng)時(shí),直線與圓O交于M,N兩點(diǎn),若,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的無窮數(shù)列的前項(xiàng)和為,且滿足(其中為常數(shù)), .數(shù)列滿足.
(1)證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)若無窮等比數(shù)列滿足:對(duì)任意的,數(shù)列中總存在兩個(gè)不同的項(xiàng), 使得,求的公比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,直線:交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求證:點(diǎn)在直線上;
(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com