【題目】已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:

①直線與直線的斜率乘積為;

軸;

③以為直徑的圓與拋物線準線相切.

其中,所有正確判斷的序號是(

A.①②③B.①②C.①③D.②③

【答案】B

【解析】

由題意,可設(shè)直線的方程為,利用韋達定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結(jié)論.

解:由題意,可設(shè)直線的方程為,

代入拋物線的方程,有

設(shè)點,的坐標分別為,

,

則直線與直線的斜率乘積為.所以①正確.

代入拋物線的方程可得,,從而,,

根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,

所以直線軸.所以②正確.

如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為

則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,三點不共線,

.所以③不正確.

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知甲箱中裝有3個紅球,2個黑球,乙箱中裝有2個紅球,3個黑球,這些球除顏色外完全相同,某商場舉行有獎促銷活動,規(guī)定顧客購物1000元以上,可以參與抽獎一次,設(shè)獎規(guī)則如下:每次分別從以上兩個箱子中各隨機摸出2個球,共4個球,若摸出4個球都是紅球,則獲得一等獎,獎金300元;摸出的球中有3個紅球,則獲得二等獎,獎金200元;摸出的球中有2個紅球,則獲得三等獎,獎金100元;其他情況不獲獎,每次摸球結(jié)束后將球放回原箱中.

1)求在1次摸獎中,獲得二等獎的概率;

2)若3人各參與摸獎1次,求獲獎人數(shù)X的數(shù)學期望

3)若商場同時還舉行打9折促銷活動,顧客只能在兩項促銷活動中任選一項參與.假若你購買了價值1200元的商品,那么你選擇參與哪一項活動對你有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】S是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列。

(1)求等比數(shù)列的公比;

(2),求的通項公式;

(3)設(shè), 是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實驗中學從高二級部中選拔一個班級代表學校參加學習強國知識大賽,經(jīng)過層層選拔,甲、乙兩個班級進入最后決賽,規(guī)定回答1個相關(guān)問題做最后的評判選擇由哪個班級代表學校參加大賽.每個班級6名選手,現(xiàn)從每個班級6名選手中隨機抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.

1)求甲、乙兩個班級抽取的6人都能正確回答的概率;

2)分別求甲、乙兩個班級能正確回答題目人數(shù)的期望和方差、,并由此分析由哪個班級代表學校參加大賽更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓稅收政策更好的為社會發(fā)展服務,國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費用,并公布了相應的定額扣除標準,決定自2019年1月1日起施行,某機關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:

40歲及以下

40歲以上

合計

基本滿意

15

30

45

很滿意

25

10

35

合計

40

40

80

(1)根據(jù)列聯(lián)表,能否有99%的把握認為滿意程度與年齡有關(guān)?

(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬員工貢獻積分(單位:分)給予相應的住房補貼(單位:元),現(xiàn)有兩種補貼方案,方案甲:;方案乙:.已知這8名員工的貢獻積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補貼的員工記為“類員工”.為了解員工對補貼方案的認可度,現(xiàn)從這8名員工中隨機抽取4名進行面談,求恰好抽到3名“類員工”的概率。

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導數(shù),函數(shù)處取得最小值.

1)求證:;

2)若時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,動點與兩定點,連線的斜率之積為,記點的軌跡為曲線.

1)求曲線的方程;

2)已知點,過原點且斜率為的直線與曲線交于兩點(點在第一象限),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家文明城市評審委員會對甲、乙兩個城市是否能入圍國家文明城市進行走訪調(diào)查,派出10人的調(diào)查組,先后到甲、乙兩個城市的街道、社區(qū)進行問卷調(diào)查,然后打分(滿分100分),他們給出甲、乙兩個城市分數(shù)的莖葉圖如圖所示:

1)請你用統(tǒng)計學的知識分析哪個城市更應該入圍國家文明城市,并說明理由;

2)從甲、乙兩個城市的打分中各抽取2個,在已知有大于80分的條件下,求抽到乙城市的分數(shù)都小于80分的概率.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案