【題目】國家文明城市評審委員會(huì)對甲、乙兩個(gè)城市是否能入圍“國家文明城市”進(jìn)行走訪調(diào)查,派出10人的調(diào)查組,先后到甲、乙兩個(gè)城市的街道、社區(qū)進(jìn)行問卷調(diào)查,然后打分(滿分100分),他們給出甲、乙兩個(gè)城市分?jǐn)?shù)的莖葉圖如圖所示:
(1)請你用統(tǒng)計(jì)學(xué)的知識(shí)分析哪個(gè)城市更應(yīng)該入圍“國家文明城市”,并說明理由;
(2)從甲、乙兩個(gè)城市的打分中各抽取2個(gè),在已知有大于80分的條件下,求抽到乙城市的分?jǐn)?shù)都小于80分的概率.
(參考數(shù)據(jù):, )
【答案】(1)乙城市,理由見解析;(2)
【解析】
(1)求出甲已兩個(gè)城市的打分平均數(shù)及方差,根據(jù)大小判斷即可;
(2)設(shè)事件“甲、乙兩個(gè)城市的打分中,各抽取2個(gè),有大于80分的分?jǐn)?shù)”,事件“甲、乙兩個(gè)城市的打分中,各抽取2個(gè),乙城市的分?jǐn)?shù)都小于80分”,根據(jù)條件概率公式求解即可.
(1)甲城市的打分平均數(shù)為:,
乙城市的打分平均數(shù)為:,
則甲城市的打分的方差為:
乙城市的打分的方差為:
甲乙兩城市的打分平均數(shù)的平均數(shù)相同,但是乙城市打分波動(dòng)更小,故乙城市更應(yīng)該入圍“國家文明城市”;
(2)由莖葉圖可得,分?jǐn)?shù)在80分以上的甲城市有4個(gè),乙城市有5個(gè).
設(shè)事件“甲、乙兩個(gè)城市的打分中,各抽取2個(gè),有大于80分的分?jǐn)?shù)”,
事件“甲、乙兩個(gè)城市的打分中,各抽取2個(gè),乙城市的分?jǐn)?shù)都小于80分”,
則,
因?yàn)?/span>,
,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:
①直線與直線的斜率乘積為;
②軸;
③以為直徑的圓與拋物線準(zhǔn)線相切.
其中,所有正確判斷的序號是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)額定,需要確定加工零件所花費(fèi)的時(shí)間,為此作了次試驗(yàn),得到數(shù)據(jù)如下:
零件數(shù)/個(gè) | 10 | 20 | 30 | 40 | 50 | 60 |
加工時(shí)間/min | 64 | 70 | 77 | 82 | 90 | 97 |
(1)試對上述變量與的關(guān)系進(jìn)行相關(guān)性檢驗(yàn),如果與具有線性相關(guān)關(guān)系,求出對的回歸直線方程;
(2)根據(jù)(1)的結(jié)論,你認(rèn)為每小時(shí)加工零件的數(shù)量額定為多少(四舍五入為整數(shù))比較合理?
附:相關(guān)性檢驗(yàn)的臨界值表
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
4 | 0.811 | 0.917 |
5 | 0.754 | 0.874 |
6 | 0.707 | 0.834 |
,
參考數(shù)據(jù):;
17950 | 9100 | 39158 | 1750 | 758 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再將所得的圖象向左平移個(gè)單位長度后得到函數(shù)的圖象.
(1)寫出函數(shù)的解析式;
(2)若對任意 , 恒成立,求實(shí)數(shù)的取值范圍;
(3)求實(shí)數(shù)和正整數(shù),使得在上恰有個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,為的中點(diǎn),、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)、運(yùn)動(dòng)時(shí),下列結(jié)論中正確的個(gè)數(shù)是( )
①平面平面;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面所成的銳二面角范圍為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形ABCD中,E,F是AD,BD中點(diǎn),,,將沿對角線BD折起至,使平面平面BCD,則四面體中,下列結(jié)論不正確的是( )
A.平面
B.異面直線CD與所成的角為
C.異面直線EF與所成的角為
D.直線與平面BCD所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為.傾斜角為,且經(jīng)過定點(diǎn)的直線與曲線交于兩點(diǎn).
(Ⅰ)寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線的直角坐標(biāo)方程;
(Ⅱ)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com