【題目】一個(gè)正方體的平面展開圖如圖所示,在這個(gè)正方體中,點(diǎn)是棱的中點(diǎn),,分別是線段,(不包含端點(diǎn))上的動(dòng)點(diǎn),則下列說(shuō)法正確的是( )
A.在點(diǎn)的運(yùn)動(dòng)過(guò)程中,存在
B.在點(diǎn)的運(yùn)動(dòng)過(guò)程中,存在
C.三棱錐的體積為定值
D.三棱錐的體積不為定值
【答案】BC
【解析】
由異面直線的判斷方法,可判斷;運(yùn)用線面垂直的判斷與性質(zhì)定理可判斷;由棱錐的體積公式和線面距離與點(diǎn)面距離的關(guān)系,可判斷,.
解:由平面展開圖,還原正方體,如圖所示.對(duì)于A選項(xiàng),因?yàn)辄c(diǎn)是線段上的動(dòng)點(diǎn),所以平面,因?yàn)?/span>平面,且與平面不平行,所以不存在.故A錯(cuò)誤;
對(duì)于B選項(xiàng).連接,,連接,,取的中點(diǎn),連接,.則為的中點(diǎn),,所以,,,四點(diǎn)共面,因?yàn)?/span>,,所以平面,因?yàn)?/span>平面,所以,即當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),,故B正確;
對(duì)于C選項(xiàng),因?yàn)辄c(diǎn)是棱的中點(diǎn),所以,因?yàn)?/span>平面,平面,所以平面,則直線上的任意一點(diǎn)到平面的距離相等,且為定值,因?yàn)辄c(diǎn)是線段上的動(dòng)點(diǎn),所以點(diǎn)到平面的距離為定值,因?yàn)?/span>的面積為定值,所以(定值),故C正確;
對(duì)于D選項(xiàng),因?yàn)辄c(diǎn)是線段上的動(dòng)點(diǎn)。所以的面積為定值,且平面就是平面,因?yàn)辄c(diǎn)到平面的距離是定值,即點(diǎn)到平面的距離也是定值,所以三棱錐的體積(定值),故D錯(cuò)誤.
故選:BC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=n2+pn,且a4,a7,a12成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)用祖暅原理計(jì)算球的體積時(shí),夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意一個(gè)平面所截,若截面面積都相等,則這兩個(gè)幾何體的體積相等.構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體(如圖③),類比上述方法,運(yùn)用祖暅原理可求得其體積等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在3世紀(jì)中期,我國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出了割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這可視為中國(guó)古代極限觀念的佳作.割圓術(shù)可以視為將一個(gè)圓內(nèi)接正邊形等分成個(gè)等腰三角形(如圖所示),當(dāng)變得很大時(shí),等腰三角形的面積之和近似等于圓的面積.運(yùn)用割圓術(shù)的思想,可得到sin3°的近似值為( )(取近似值3.14)
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,,在底面上的投影為的中點(diǎn),.有下列結(jié)論:
①三棱錐的三條側(cè)棱長(zhǎng)均相等;
②的取值范圍是;
③若三棱錐的四個(gè)頂點(diǎn)都在球的表面上,則球的體積為;
④若,是線段上一動(dòng)點(diǎn),則的最小值為.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.②③C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正三角形中,E為邊的中點(diǎn),過(guò)E作于D.把沿翻折至的位置,連結(jié).翻折過(guò)程中,其中正確的結(jié)論是( )
A.;
B.存在某個(gè)位置,使;
C.若,則的長(zhǎng)是定值;
D.若,則四面體的體積最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,,分別是,中點(diǎn),為線段上的一個(gè)動(dòng)點(diǎn).
(1)證明:平面;
(2)當(dāng)二面角的余弦值為時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上不單調(diào),求a的取值范圍;
(2)當(dāng)時(shí),記的兩個(gè)零點(diǎn)是
①求a的取值范圍;
②證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com