(14分)已知函數(shù),其中a是實數(shù),設A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的點,且x1<x2
(I)指出函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)的圖象在點A,B處的切線互相垂直,且x2<0,求x2﹣x1的最小值;
(III)若函數(shù)f(x)的圖象在點A,B處的切線重合,求a的取值范圍.

(I)f(x)在(﹣∞,﹣1)上單調(diào)遞減,在(﹣1,0)上單調(diào)遞增(II)1(III)(﹣1﹣ln2,+∞)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)滿足對任意實數(shù)都有成立,且當時,,.
(1)求的值;
(2)判斷上的單調(diào)性,并證明;
(3)若對于任意給定的正實數(shù),總能找到一個正實數(shù),使得當時,,則稱函數(shù)處連續(xù)。試證明:處連續(xù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在R上的奇函數(shù)有最小正周期4,且時,。
(1)求上的解析式;
(2)判斷上的單調(diào)性,并給予證明;
(3)當為何值時,關于方程上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

漁場中魚群的最大養(yǎng)殖量是m噸,為保證魚群的生長空間,實際養(yǎng)殖量不能達到最大養(yǎng)殖量,必須留出適當?shù)目臻e量。已知魚群的年增長量y噸和實際養(yǎng)殖量x噸與空閑率乘積成正比,比例系數(shù)為k(k>0).
寫出y關于x的函數(shù)關系式,指出這個函數(shù)的定義域;
求魚群年增長量的最大值;
當魚群的年增長量達到最大值時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為常數(shù), ,函數(shù)的圖象與坐標軸交點處的切線為,函數(shù)的圖象與直線交點處的切線為,且。
(Ⅰ)若對任意的,不等式成立,求實數(shù)的取值范圍.
(Ⅱ)對于函數(shù)公共定義域內(nèi)的任意實數(shù)。我們把 的值稱為兩函數(shù)在處的偏差。求證:函數(shù)在其公共定義域的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(Ⅰ)已知函數(shù),若存在,使得,則稱是函數(shù)的一個不動點,設二次函數(shù).
(Ⅰ) 當時,求函數(shù)的不動點;
(Ⅱ) 若對于任意實數(shù),函數(shù)恒有兩個不同的不動點,求實數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點的橫坐標是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) f(x)=ax+lnx,其中a為常數(shù),設e為自然對數(shù)的底數(shù).
(1)當a=-1時,求的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-3,求a的值;
(3)當a=-1時,試推斷方程是否有實數(shù)解 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的導函數(shù)的圖像與直線平行,且處取得極小值.設
(1)若曲線上的點到點的距離的最小值為,求的值;
(2)如何取值時,函數(shù)存在零點,并求出零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻,地面利用原地面均不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米長造價45元,屋頂每平方米造價20元.
(1)倉庫面積的最大允許值是多少?
(2)為使面積達到最大而實際投入又不超過預算,正面鐵柵應設計為多長?

查看答案和解析>>

同步練習冊答案