【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號(hào)).

ACBD;②AC∥截面PQMN;③ACBD;④異面直線PMBD所成的角為45°.

【答案】①②④

【解析】在四面體,因?yàn)榻孛?/span>是正方形 平面 平面 平面,因?yàn)槠矫?/span> 平面,可得 平面,同理可得 平面, , 是異面直線 所成的角,且為,由上面可知 , ,綜上可知:①②④都正確,故答案為①②④.

【方法點(diǎn)晴】本題主要考查異面直線所成的角以及線面平行的判斷,屬于難題.求異面直線所成的角主要方法有兩種:一是向量法,根據(jù)幾何體的特殊性質(zhì)建立空間直角坐標(biāo)系后,分別求出兩直線的方向向量,再利用空間向量夾角的余弦公式求解;二是傳統(tǒng)法,利用平行四邊形、三角形中位線等方法找出兩直線成的角,再利用平面幾何性質(zhì)求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長(zhǎng)為2的等邊三角形,點(diǎn)的中點(diǎn),且平面平面

I求異面直線所成角的余弦值;

II若點(diǎn)在線段上移動(dòng),是否存在點(diǎn)使平面與平面所成的角為?若存在,指出點(diǎn)的位置,否則說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)滿(mǎn)足不等式函數(shù)無(wú)極值點(diǎn)

1為假命題,為真命題,求實(shí)數(shù)的取值范圍;

2已知為真命題,并記為,且,若的必要不充分條件,求正整數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫度x

10

11

13

12

8

發(fā)芽數(shù)y

23

25

30

26

16

設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn)

1求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;

2若選取的是日與日的兩組數(shù)據(jù),請(qǐng)根據(jù)日與日的數(shù)據(jù),求關(guān)于的線性回歸方程;

3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)2中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開(kāi)辟為水果園種植桃樹(shù),已知角,的長(zhǎng)度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長(zhǎng)度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米若圍圍墻用了元,問(wèn)如何圍可使竹籬笆用料最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的點(diǎn).

(1)求證: 平面平面;

(2)若的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,點(diǎn)是棱的中點(diǎn),,平面平面

(Ⅰ)求證://平面;

(Ⅱ)求證:平面;

(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫(xiě)出的一個(gè)值(只需寫(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , 均可為一個(gè)三角形的三邊長(zhǎng),則稱(chēng)函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時(shí)間的情況,從全校學(xué)生中抽取人,統(tǒng)計(jì)他們平均每天在家的時(shí)間在家時(shí)間在小時(shí)以上的就認(rèn)為具有屬性,否則就認(rèn)為不具有屬性

具有屬性

不具有屬性

總計(jì)

男生

20

50

70

女生

10

40

50

總計(jì)

30

90

120

1請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤的概率不超過(guò)

的前提下認(rèn)為是否具有屬性與性別有關(guān)?

2采用分層抽樣的方法從具有屬性的學(xué)生里抽取一個(gè)人的樣本,其中男生和女生各多少人?

人中隨機(jī)選取人做進(jìn)一步的調(diào)查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案