【題目】如圖,在四棱錐中,底面,底面是直角梯形,,是上的點(diǎn).
(1)求證: 平面平面;
(2)若是的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由平面,得到,在利用勾股定理,得到,即可利用線面垂直的判定定理,證得平面,即可證明結(jié)論;(2)以為原點(diǎn),建立空間直角坐標(biāo)系,得到平面和平面的一個(gè)法向量,利用向量的運(yùn)算,即可求解直線與平面所成角的正弦值.
試題解析:(1)證明:平面平面,
,.
又面面平面平面
平面平面.
(2)以為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,
則,設(shè),
則 ,
取, 則為面的法向量.
設(shè)為面的法向量.則, 即,
取,則,
依題意,,則,于是.
設(shè)直線與平面所成角為,則,
即直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(必須列式,不能只寫答案,答案用數(shù)字表示)有4個(gè)不同的球,四個(gè)不同的盒子,把球全部放入盒內(nèi).
(1)求共有多少種放法;
(2)求恰有一個(gè)盒子不放球,有多少種放法;
(3)求恰有兩個(gè)盒內(nèi)不放球,有多少種放法;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號(hào)).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④異面直線PM與BD所成的角為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:與直線()交于,兩點(diǎn).
(1)當(dāng)時(shí),分別求在點(diǎn)和處的切線方程;
(2)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于、兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點(diǎn)為圓上異于的任意一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn).
(1)求圓的方程;
(2)求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù)
(1)比較的大小,并說明理由.(提示:)
(2)若,且對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com