【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時,有 >0.
(Ⅰ)證明f(x)在[﹣1,1]上是增函數(shù);
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1對x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.

【答案】解:(Ⅰ)任取﹣1≤x1<x2≤1,

∵﹣1≤x1<x2≤1,∴x1+(﹣x2)≠0,

由已知 ,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),

∴f(x)在[﹣1,1]上是增函數(shù);

(Ⅱ)∵f(x)是定義在[﹣1,1]上的奇函數(shù),且在[﹣1,1]上是增函數(shù),

∴不等式化為f(x2﹣1)<f(3x﹣3),

,解得

(Ⅲ)由(Ⅰ)知f(x)在[﹣1,1]上是增函數(shù),

∴f(x)在[﹣1,1]上的最大值為f(1)=1,

要使f(x)≤t2﹣2at+1對x∈[﹣1,1]恒成立,只要t2﹣2at+1≥1t2﹣2at≥0,

設(shè)g(a)=t2﹣2at,對a∈[﹣1,1],g(a)≥0恒成立,

∴t≥2或t≤﹣2或t=0.


【解析】本題考查的是奇函數(shù)和增減性相結(jié)合的問題,用定義去證明函數(shù)的單調(diào)性。一元二次函數(shù)在指定區(qū)間內(nèi)的最值問題,對稱軸在指定區(qū)間內(nèi)就能取到函數(shù)的最值,如果不在根據(jù)單調(diào)性去解決。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中a為常數(shù),
(1)若函數(shù)f(x)為奇函數(shù),求a的值;
(2)若函數(shù)f(x)在(2,5)上有意義,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[0,3]上有最大值5和最小值1.設(shè)f(x)=
(1)求a,b的值;
(2)若不等式f(x)﹣k≥0在x∈[1,4]上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中, ,an+1=
(1)計算a2 , a3 , a4并猜想數(shù)列{an}的通項公式;
(2)用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1:

(1)若AD=DC,求異面直線PA,BC所成的角;
(2)求PB與平面PDC所成角大;
(3)求二面角D﹣PB﹣C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意x∈R,函數(shù)y=(k2﹣k﹣2)x2﹣(k﹣2)x﹣1的圖象始終在x軸下方,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U=R,A= ,則A∩(UB)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) ,函數(shù) ,其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)h(x).
(1)求函數(shù)f(x)的表達式,并求其定義域;
(2)當 時,求函數(shù)f(x)的值域;
(3)是否存在自然數(shù)a,使得函數(shù)f(x)的值域恰為 ?若存在,試寫出所有滿足條件的自然數(shù)a所構(gòu)成的集合;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知離心率為 的橢圓C: + =1(a>b>0)過點M(2,1),O為坐標原點,平行于OM的直線l交橢圓C于不同的兩點A、B.

(1)求橢圓C的方程.
(2)證明:直線MA、MB與x軸圍成一個等腰三角形.

查看答案和解析>>

同步練習冊答案