如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,F(xiàn)A⊥CD.
(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,側(cè)面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,,,.
(1)求證:BC平面PBD:
(2)求直線AP與平面PDB所成角的正弦值;
(3)設(shè)E為側(cè)棱PC上異于端點的一點,,試確定的值,使得二面角E-BD-P的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱中,△ABC是正三角形,,平面平面,.
(1)證明:;
(2)證明:求二面角的余弦值;
(3)設(shè)點是平面內(nèi)的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是直角梯形,,,且,頂點在底面內(nèi)的射影恰好落在的中點上.
(1)求證:;
(2)若,求直線與所成角的 余弦值;
(3)若平面與平面所成的二面角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,點、分別為、的中點.
(1)求證:平面;
(2)求直線和平面所成角的正弦值;
(3)能否在上找到一點,使得平面?若能,請指出點的位置,并加以證明;若不能,請說明理由 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com