如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,△ABC是邊長為6的等邊三角形,E,D分別為AB、AC靠近B、C的三等分點,點G為BC邊的中點.線段AG交線段ED于F點,將△AED沿ED翻折,使平面AED⊥平面BCDE,連接AB、AC、AG形成如圖乙所示的幾何體。
(1)求證BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,F(xiàn)A⊥CD.
(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在中,,,點在邊上,設(shè),過點作交于,作交于。沿將翻折成使平面平面;沿將翻折成使平面平面.
(1)求證:平面;
(2)是否存在正實數(shù),使得二面角的大小為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分別是AB,AP的中點.
(1)求證:AC⊥EF;
(2)求二面角F-OE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com