設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,過F2的直線l與橢圓C相交于A,B兩點,直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2
3

(Ⅰ)求橢圓C的焦距;
(Ⅱ)如果
AF2
=2
F2B
,求橢圓C的方程.
(Ⅰ)設(shè)焦距為2c,由已知可得F1到直線l的距離
3
c=2
3
,故c=2

所以橢圓C的焦距為4.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),由題意知y1<0,y2>0,直線l的方程為y=
3
(x-2)

聯(lián)立
y=
3
(x-2)
x2
a2
+
y2
b2
=1
得(3a2+b2)y2+4
3
b2y-3b4=0

解得y1=
-
3
b2(2+2a)
3a2+b2
y2=
-
3
b2(2-2a)
3a2+b2

因為
AF2
=2
F2B
,所以-y1=2y2

3
b2(2+2a)
3a2+b2
=2•
-
3
b2(2-2a)
3a2+b2

a=3.而a2-b2=4,所以b=
5

故橢圓C的方程為
x2
9
+
y2
5
=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的任意一條與x軸不垂直的弦,O是橢圓的中心,e為橢圓的離心率,M為AB的中點,則KAB•KOM的值為(  )
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過直線l:y=x+9上的一點P作一個長軸最短的橢圓,使其焦點為F1(-3,0),F(xiàn)2(3,0),則橢圓的方程為(  )
A.
x2
12
+
y2
3
=1
B.
x2
25
+
y2
16
=1
C.
x2
45
+
y2
36
=1
D.
x2
81
+
y2
72
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),A(2,0)為長軸的一個端點,弦BC過橢圓的中心O,且
AC
BC
=0,|
OC
-
OB
|
=2|
BC
-
BA
|
,則其焦距為( 。
A.
2
6
3
B.
4
3
3
C.
4
6
3
D.
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過定點A(1,2),則橢圓的中心到準線的距離的最小值______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率是
1
2
,則
b2+1
3a
的最小值為( 。
A.
3
3
B.1C.
2
3
3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點是F1和F2,長軸是A1A2,P是橢圓上異于A1、A2的點,考慮如下四個命題:
①|(zhì)PF1|-|A1F1|=|A1F2|-|PF2|;
②a-c<|PF1|<a+c;
③若b越接近于a,則離心率越接近于1;
④直線PA1與PA2的斜率之積等于-
b2
a2

其中正確的命題是(  )
A.①②④B.①②③C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
2
+
y2
3
=1
,F(xiàn)1、F2是它的焦點,AB是過F1的弦,則△ABF2的周長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,其中一個焦點為F1
3
,0),且該焦點于長軸上較近的端點距離為2-
3

(1)示此橢圓的標(biāo)準方程及離心率;
(2)設(shè)F2是橢圓另一個焦點,若P是該橢圓上一個動點,求
PF1
PF2
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案