【題目】底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.
(1)求證:;
(2)求二面角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;
(2)建立空間直角坐標(biāo)系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量積運(yùn)算即可.
(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.
由題意易知,,所以,,
因為,所以平面,
又平面,所以.
(2)設(shè),,由已知可得:平面平面,
所以,同理可得:,所以四邊形為平行四邊形,
所以為的中點,為的中點,所以平行且相等,從而平面,
又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,
,,由平面幾何知識,得.
則,,,,
所以,,.
設(shè)平面的法向量為,由,可得,
令,則,,所以.同理,平面的一個法向量為.
設(shè)平面與平面所成角為,
則,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于,兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.
(1)若點的坐標(biāo)為,求的值;
(2)設(shè)線段的中點為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱的底面是直角梯形,,,,分別是棱,上的動點,且,,.
(1)證明:無論點怎樣運(yùn)動,四邊形都為矩形;
(2)當(dāng)時,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上極值點的個數(shù);
(2)若是函數(shù)的兩個極值點,且恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左右焦點分別為,,為坐標(biāo)原點.為曲線右支上的點,點在外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為4,離心率為,斜率不為0的直線與橢圓相交于,兩點(,異于橢圓的頂點),且以為直徑的圓過橢圓的右頂點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,證明:在上恒成立;
(2)若函數(shù)有唯一零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com