(Ⅰ)解:數(shù)列
不能結(jié)束,各數(shù)列依次為
;
;
;
;
;
;….從而以下重復(fù)出現(xiàn),不會(huì)出現(xiàn)所有項(xiàng)均為
的情形. ……2分
數(shù)列
能結(jié)束,各數(shù)列依次為
;
;
;
.
……………3分
(Ⅱ)解:
經(jīng)過(guò)有限次“
變換”后能夠結(jié)束的充要條件是
.……4分
若
,則經(jīng)過(guò)一次“
變換”就得到數(shù)列
,從而結(jié)束.……5分
當(dāng)數(shù)列
經(jīng)過(guò)有限次“
變換”后能夠結(jié)束時(shí),先證命題“若數(shù)列
為常數(shù)列,則
為常數(shù)列”.
當(dāng)
時(shí),數(shù)列
.
由數(shù)列
為常數(shù)列得
,解得
,從而數(shù)列
也為常數(shù)列.
其它情形同理,得證.
在數(shù)列
經(jīng)過(guò)有限次“
變換”后結(jié)束時(shí),得到數(shù)列
(常數(shù)列),由以上命題,它變換之前的數(shù)列也為常數(shù)列,可知數(shù)列
也為常數(shù)列. ………8分
所以,數(shù)列
經(jīng)過(guò)有限次“
變換”后能夠結(jié)束的充要條件是
.
(Ⅲ)證明:先證明引理:“數(shù)列
的最大項(xiàng)一定不大于數(shù)列
的最大項(xiàng),其中
”.
證明:記數(shù)列
中最大項(xiàng)為
,則
.
令
,
,其中
.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211129851476.png" style="vertical-align:middle;" />, 所以
,
故
,證畢. ……………9分
現(xiàn)將數(shù)列
分為兩類(lèi).
第一類(lèi)是沒(méi)有為
的項(xiàng),或者為
的項(xiàng)與最大項(xiàng)不相鄰(規(guī)定首項(xiàng)與末項(xiàng)相鄰),此時(shí)由引理可知,
.
第二類(lèi)是含有為
的項(xiàng),且與最大項(xiàng)相鄰,此時(shí)
.
下面證明第二類(lèi)數(shù)列
經(jīng)過(guò)有限次“
變換”,一定可以得到第一類(lèi)數(shù)列.
不妨令數(shù)列
的第一項(xiàng)為
,第二項(xiàng)
最大(
).(其它情形同理)
①當(dāng)數(shù)列
中只有一項(xiàng)為
時(shí),
若
(
),則
,此數(shù)列各項(xiàng)均不為
或含有
項(xiàng)但與最大項(xiàng)不相鄰,為第一類(lèi)數(shù)列;
若
,則
;
此數(shù)列各項(xiàng)均不為
或含有
項(xiàng)但與最大項(xiàng)不相鄰,為第一類(lèi)數(shù)列;
若
(
),則
,此數(shù)列各項(xiàng)均不為
,為第一類(lèi)數(shù)列;
若
,則
;
;
,
此數(shù)列各項(xiàng)均不為
,為第一類(lèi)數(shù)列.
②當(dāng)數(shù)列
中有兩項(xiàng)為
時(shí),若
(
),則
,此數(shù)列各項(xiàng)均不為
,為第一類(lèi)數(shù)列;
若
(
),則
,
,此數(shù)列各項(xiàng)均不為
或含有
項(xiàng)但與最大項(xiàng)不相鄰,為第一類(lèi)數(shù)列.
③當(dāng)數(shù)列
中有三項(xiàng)為
時(shí),只能是
,則
,
,
,此數(shù)列各項(xiàng)均不為
,為第一類(lèi)數(shù)列.
總之,第二類(lèi)數(shù)列
至多經(jīng)過(guò)
次“
變換”,就會(huì)得到第一類(lèi)數(shù)列,即至多連續(xù)經(jīng)歷
次“
變換”,數(shù)列的最大項(xiàng)又開(kāi)始減少.
又因?yàn)楦鲾?shù)列的最大項(xiàng)是非負(fù)整數(shù),
故經(jīng)過(guò)有限次“
變換”后,數(shù)列的最大項(xiàng)一定會(huì)為
,此時(shí)數(shù)列的各項(xiàng)均為
,從而結(jié)束. ………………13分