【題目】設(shè)函數(shù)f(x)= +c(e=2.71828…是自然對數(shù)的底數(shù),c∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于x的方程|lnx|=f(x)根的個數(shù).

【答案】解:(Ⅰ)∵f′(x)= ,解f′(x)>0,得x< ;解f′(x)<0,得x>

∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞, );單調(diào)遞減區(qū)間為( ,+∞).

故f(x)在x= 取得最大值,且f(x)max= +c.

(Ⅱ)函數(shù)y=|lnx|,當(dāng)x>0時的值域為[0,+∞).如圖所示:

①當(dāng)0<x≤1時,令u(x)=﹣lnx﹣ ﹣c,

c=﹣lnx﹣ =g(x),

則g′(x)=﹣

令h(x)=e2x+x﹣2x2,則h′(x)=2e2x+1﹣4x>0,∴h(x)在x∈(0,1]單調(diào)遞增,

∴1=h(0)<h(x)≤h(1)=e2﹣1.

∴g′(x)<0,∴g(x)在x∈(0,1]單調(diào)遞減.

∴c≥g(1)=﹣

②當(dāng)x≥1時,令v(x)=lnx﹣ ﹣c,得到c=lnx﹣ =m(x),

則m′(x)= >0,

故m(x)在[1,+∞)上單調(diào)遞增,∴c≥m(1)=﹣

綜上①②可知:當(dāng)c<﹣ 時,方程|lnx|=f(x)無實數(shù)根;

當(dāng)c=﹣ 時,方程|lnx|=f(x)有一個實數(shù)根;

當(dāng)c>﹣ 時,方程|lnx|=f(x)有兩個實數(shù)根.


【解析】(Ⅰ)根據(jù)題意分析f(x)的導(dǎo)數(shù),討論f′(x)的正負(fù)情況即可得到函數(shù)的單調(diào)性與最值。(2)由題意轉(zhuǎn)化問題為已知函數(shù)在[0,+∞)上的根的情況,逐一討論去掉絕對值符號再分析導(dǎo)函數(shù)的性質(zhì),通過單調(diào)區(qū)間和極值判斷各種情況下的根的個數(shù),然后求個情況的并集即可。
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是菱形,且∠A=60°,AB=2,E為AB的中點,將四邊形EBCD沿DE折起至EDC1B1 , 如圖2.
(Ⅰ) 求證:平面ADE⊥平面AEB1;
(Ⅱ) 若二面角A﹣DE﹣C1的大小為 ,求三棱錐C1﹣AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購置貨車專門運(yùn)營從甲地到乙地的貨物,一輛貨車每天只能運(yùn)營一趟,每輛車每 趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)該購置幾輛貨
車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點P是線段BD1上的動點.當(dāng)△PAC在平面DC1 , BC1 , AC上的正投影都為三角形時,將它們的面積分別記為S1 , S2 , S3
(i)當(dāng)BP= 時,S1S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊長分別是a、b、c,且 ,若將函數(shù)f(x)=2sin(2x+B)的圖象向右平移 個單位長度,得到函數(shù)g(x)的圖象,則g(x)的解析式為( )
A.
B.
C.2sin2x
D.2cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 滿足an+1= ,n∈N* , 且a2 , a5 , a14構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若對一切正整數(shù)n都有 + +…+ ,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,AC與BD交于點O,E是線段OD的中點,AE的延長線與CD相交于點F.若AB=2, ,∠BAD=45°,則 =( )

A.
B.1
C.﹣
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)f(x)=x3+ax2+x在R上是增函數(shù);命題q:若函數(shù)g(x)=ex﹣x+a在區(qū)間[0,+∞)沒有零點.
(1)如果命題p為真命題,求實數(shù)a的取值范圍;
(2)命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是

查看答案和解析>>

同步練習(xí)冊答案