【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是 .
科目:高中數學 來源: 題型:
【題目】已知曲線C的參數方程為 ,在同一平面直角坐標系中,將曲線C上的點按坐標變換 得到曲線C',以原點為極點,x軸的正半軸為極軸,建立極坐標系. (Ⅰ)求曲線C'的極坐標方程;
(Ⅱ)若過點 (極坐標)且傾斜角為 的直線l與曲線C'交于M,N兩點,弦MN的中點為P,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點P(x,y)與一定點F(1,0)的距離和它到一定直線l:x=4的距離之比為 .
(1)求動點P(x,y)的軌跡C的方程;
(2)己知直線l':x=my+1交軌跡C于A、B兩點,過點A、B分別作直線l的垂線,垂足依次為點D、E.連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出定點的坐標,并給予證明;否則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程 的兩個實數根,若斜邊BC上有異于端點的E,F兩點,且EF=1,∠EAF=θ,則tanθ的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=4x和直線l:x=-1.
(1)若曲線C上存在一點Q,它到l的距離與到坐標原點O的距離相等,求Q點的坐標;
(2)過直線l上任一點P作拋物線的兩條切線,切點記為A,B,求證:直線AB過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分別為PC,CD的中點
(1)求證:平面ABE⊥平面BEF
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角θ∈[ , ],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分別求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com