如圖,的外接圓的切線與的延長線交于點(diǎn),的平分線與交于點(diǎn)D.
(1)求證:
(2)若是的外接圓的直徑,且,=1.求長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何證明選講.
如圖,直線過圓心,交⊙于,直線交⊙于 (不與重合),直線與⊙相切于,交于,且與垂直,垂足為,連結(jié).
求證:(1);
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)在軸上,點(diǎn)為線段的中點(diǎn)
(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動(dòng)圓過點(diǎn)且與圓內(nèi)切,求動(dòng)圓的圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)M在菱形ABCD的BC邊上,連結(jié)AM交BD于點(diǎn)E,過菱形ABCD的頂點(diǎn)C作CN∥AM,分別交BD、AD于點(diǎn)F、N,連結(jié)AF、CE.判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長為1的等邊△ABC中,D、E分別為邊AB、AC上的點(diǎn),若A關(guān)于直線DE的對稱點(diǎn)A1恰好在線段BC上,
(1)①設(shè)A1B=x,用x表示AD;②設(shè)∠A1AB=θ∈[0º,60º],用θ表示AD
(2)求AD長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,已知是的切線,為切點(diǎn),是的割線,與交于兩點(diǎn),圓心在的內(nèi)部,點(diǎn)是的中點(diǎn).
(1)證明四點(diǎn)共圓;
(2)求的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對角線AC與BD相交于M,AC⊥BD,E是DC中點(diǎn)連結(jié)EM交AB于F,作OH⊥AB于HH,
求證:(1)EF⊥AB (2)OH=ME
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,從圓外一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,與交于點(diǎn),設(shè)為過點(diǎn)且不過圓心的一條弦,求證:四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選做題.(本題滿分10分.請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí),用2B鉛筆在答題卡上把所選題目對應(yīng)的標(biāo)號涂黑.)
選修4—1:平面幾何
如圖,Δ是內(nèi)接于⊙O,,直線切⊙O于點(diǎn),弦,與相交于點(diǎn).
(1)求證:Δ≌Δ;
(2)若,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com