如圖,已知點(diǎn)M在菱形ABCDBC邊上,連結(jié)AMBD于點(diǎn)E,過菱形ABCD的頂點(diǎn)CCNAM,分別交BDAD于點(diǎn)F、N,連結(jié)AF、CE.判斷四邊形AECF的形狀,并說明理由.

四邊形AECF是菱形 

解析試題分析:四邊形AECF是菱形,                                             …2分
理由如下:連接AC,設(shè)AC與BD交于點(diǎn)O,
因?yàn)樽?i>CN
AM,所以AECF,所以,
因?yàn)?i>ABCD是菱形,所以
所以,所以,
所以四邊形一組對邊平行且相等,所以四邊形是平行四邊形;
又因?yàn)樵撈叫兴倪呅螌蔷互相垂直平分,所以四邊形是菱形.            …10分
考點(diǎn):本小題主要考查平面圖形形狀的判斷,考查學(xué)生利用平面幾何知識(shí)解決問題的能力.
點(diǎn)評:解決此類問題的關(guān)鍵是靈活運(yùn)用平面幾何中的性質(zhì)和定理,適當(dāng)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,點(diǎn)上,,平分,交于點(diǎn).求證:為等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是圓內(nèi)接四邊形,延長與的延長線交于點(diǎn),且, .

(1)求證:;
(2)當(dāng)時(shí),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知是圓的直徑,是弦,,垂足為平分。

(1)求證:直線與圓的相切;
(2)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知為銳角△的內(nèi)心,且,點(diǎn)為內(nèi)切圓與邊的切點(diǎn),過點(diǎn)作直線的垂線,垂足為

(1)求證:
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點(diǎn)E,EF垂直BA的延長線于點(diǎn)F.

求證:(1);
(2)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的外接圓的切線的延長線交于點(diǎn),的平分線與交于點(diǎn)D.

(1)求證:
(2)若的外接圓的直徑,且=1.求長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G。

(1)求證:圓心O在直線AD上;
(2)求證:點(diǎn)C是線段GD的中點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(選修4-1:幾何證明選講)
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE•BF=BC•BD

查看答案和解析>>

同步練習(xí)冊答案