(本小題滿分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對角線AC與BD相交于M,AC⊥BD,E是DC中點(diǎn)連結(jié)EM交AB于F,作OH⊥AB于HH,
求證:(1)EF⊥AB (2)OH=ME
利用相似和互補(bǔ)角的關(guān)系,證明垂直。(2)根據(jù)平行四邊形的性質(zhì)證明線段的相等。
解析試題分析:(1)
……………………………………………………………………5分
(2)
連結(jié)HM,并延長交CD于G,又(1)的證法,可證
∴OE∥HG ,OH∥EF
∴OEMH是平行四邊形
∴OH=ME…………………………………………………………………10分
考點(diǎn):本試題考查了平面幾何的運(yùn)用。
點(diǎn)評:對于平面幾何中的線段的相等,一般通過證明角相等來得到邊相等。同時垂直的證明,只要證明三角形中其余的兩個角和為直角即可。屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知為銳角△的內(nèi)心,且,點(diǎn)為內(nèi)切圓與邊的切點(diǎn),過點(diǎn)作直線的垂線,垂足為.
(1)求證:;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,的外接圓的切線與的延長線交于點(diǎn),的平分線與交于點(diǎn)D.
(1)求證:
(2)若是的外接圓的直徑,且,=1.求長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-1:幾何證明選講
如圖,A,B,C,D四點(diǎn)在同一圓上,與的延長線交于點(diǎn),點(diǎn)在的延長線上.
(Ⅰ)若,求的值;
(Ⅱ)若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G。
(1)求證:圓心O在直線AD上;
(2)求證:點(diǎn)C是線段GD的中點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4—1: 幾何證明選講
如圖,直線經(jīng)過⊙O上一點(diǎn),且,,⊙O交直線于.
(1)求證:直線是⊙O的切線;
(2)若⊙O的半徑為3,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,現(xiàn)在要在一塊半徑為1m.圓心角為60°的扇形紙板AOB上剪出一個平行四邊形MNPQ,使點(diǎn)P在AB弧上,點(diǎn)Q在OA上,點(diǎn)M,N在OB上,設(shè)∠BOP=θ,YMNPQ的面積為S.
(1)求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值及相應(yīng)θ的值
1.
2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60º,M、N分別是對角線BD、AC上的點(diǎn),AC、BD相交于點(diǎn)O,已知BM=BO,ON=OC.設(shè)向量=a,=b
(1)試用a,b表示;w
(2)求||.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com