選做題.(本題滿分10分.請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時,用2B鉛筆在答題卡上把所選題目對應的標號涂黑.)
選修4—1:平面幾何
如圖,Δ是內接于⊙O,直線切⊙O于點,相交于點.

(1)求證:Δ≌Δ
(2)若,求

解:(Ⅰ)在ΔABE和ΔACD中,
  ∠ABE=∠ACD………………2分
又,∠BAE=∠EDC
∵BD//MN   
∴∠EDC=∠DCN
∵直線是圓的切線,
∴∠DCN=∠CAD
∴∠BAE=∠CAD
∴ΔΔ(角、邊、角)……………………………5分
(Ⅱ)∵∠EBC=∠BCM ∠BCM=∠BDC[來源:學+科+網Z+X+X+K]
∴∠EBC=∠BDC=∠BAC  BC=CD=4
又  ∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB  
∴    BC="BE=4   " ……………………………8分
設AE=,易證 ΔABE∽ΔDEC[來源:學+科+網]

又 
……………………………10分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,的外接圓的切線的延長線交于點,的平分線與交于點D.

(1)求證:
(2)若的外接圓的直徑,且,=1.求長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(選修4-1:幾何證明選講)
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE•BF=BC•BD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

選修4—1:幾何證明選講(10分):
如圖:如圖E、F、G、H為凸四邊形ABCD中AC、BD、AD、DC的中點,∠ABC=∠ADC。

(1)求證:∠ADC=∠GEH;       (3分)
(2)求證:E、F、G、H四點共圓; (4分)
(3)求證:∠AEF=∠ACB-∠ACD  (3分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

曲線的參數(shù)方程為(t是參數(shù)),則曲線是(    )

A.線段 B.直線 C.圓 D.射線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

將曲線y=sin3x變?yōu)閥=2sinx的伸縮變換是(  )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,現(xiàn)在要在一塊半徑為1m.圓心角為60°的扇形紙板AOB上剪出一個平行四邊形MNPQ,使點PAB弧上,點QOA上,點M,NOB上,設∠BOPθ,YMNPQ的面積為S
(1)求S關于θ的函數(shù)關系式;
(2)求S的最大值及相應θ的值
1.  
2.   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,A為弧CE的重點,DE交AB于點F,且AB=2BP=4,求PF的長度。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60º,M、N分別是對角線BDAC上的點,ACBD相交于點O,已知BM=BOON=OC.設向量=a,=b
(1)試用a,b表示;w
(2)求||.
 

查看答案和解析>>

同步練習冊答案