【題目】某居民區(qū)有一個銀行網(wǎng)點(以下簡稱“網(wǎng)點”),網(wǎng)點開設了若干個服務窗口,每個窗口可以辦理的業(yè)務都相同,每工作日開始辦理業(yè)務的時間是8點30分,8點30分之前為等待時段.假設每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率都相等,且每位儲戶是否在該時段到網(wǎng)點相互獨立.根據(jù)歷史數(shù)據(jù),統(tǒng)計了各工作日在等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計每工作日等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)的平均值;

(2)假設網(wǎng)點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率;

②儲戶都是按照進入網(wǎng)點的先后順序,在等候人數(shù)最少的服務窗口排隊辦理業(yè)務.記“每工作日上午8點30分時網(wǎng)點每個服務窗口的排隊人數(shù)(包括正在辦理業(yè)務的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點至少需開設多少個服務窗口?

參考數(shù)據(jù):;

;.

【答案】(1)10(2)①0.014

【解析】

1)先求出各組的頻率,根據(jù)均值公式得出平均值;

2)①在等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)服從,根據(jù)期望得出概率;

②先求出,然后與參考數(shù)據(jù)進行對比,得出整數(shù)的最值.

(1)根據(jù)頻率分布直方圖,各組的頻率依次為:0.04,0.24,0.48,0.16,0.08,

故所求的平均值為: .

即每工作日等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)的平均值為10.

(2)①設在等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)為

每位儲戶到網(wǎng)點辦理業(yè)務的概率為,則,

所以的數(shù)學期望,

將頻率視作概率,根據(jù)(1)的結(jié)論,所以,解得.

即每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率為0.01.

知,,則.

設網(wǎng)點共開設了個服務窗口,

則事件“每工作日等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)不超過”,

其概率為,

所以滿足的最小正整數(shù),即為所求.

因為 ,

,

所以,即的最小值.

所以根據(jù)要求,網(wǎng)點至少需開設4個服務窗口.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且過點P。

(1)求橢圓的標準方程;

(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 fx)=(x1exax2

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若處取得極大值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖場需要通過某裝置對養(yǎng)殖車間進行恒溫控制,為了解日用電量與日平均氣溫(℃)之間的關系,隨機統(tǒng)計了某5天的用電量與當天平均氣溫,并制作了對照表:

日平均氣溫(℃)

3

4

5

6

7

日用電量(

2.5

3

4

4.5

6

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)請利用(Ⅰ)中的線性回歸方程預測日平均氣溫為12℃時的日用電量.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】又到了品嘗小龍蝦的季節(jié),小龍蝦近幾年來被稱作是“國民宵夜”風靡國內(nèi)外.在巨大的需求市場下,湖北的小龍蝦產(chǎn)量占據(jù)了全國的半壁江山,湖北某地區(qū)近幾年的小龍蝦產(chǎn)量統(tǒng)計如下表:

年份

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.9

7.4

7.7

8

8.4

1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程

2)根據(jù)線性回歸方程預測2019年該地區(qū)農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:.(參考數(shù)據(jù):,計算結(jié)果保留小數(shù)點后兩位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C的右準線方程為x4,右頂點為A,上頂點為B,右焦點為F,斜率為2的直線l經(jīng)過點A,且點F到直線l的距離為.

(1)求橢圓C的標準方程.

(2)將直線l繞點A旋轉(zhuǎn),它與橢圓C相交于另一點P,當B,FP三點共線時,試確定直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由于近幾年我國多地區(qū)的霧霾天氣,引起口罩熱銷,某廠家擬在2017年舉行促銷活動,經(jīng)調(diào)查該批口罩銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為常數(shù)).已知生產(chǎn)該批口罩還要投入成本萬元(不包含促銷費用),口罩的銷售價格定為元/件.

1)將該批口罩的利潤萬元表示為促銷費用萬元的函數(shù);

2)當促銷費用投入多少萬元時,該廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新零售模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.x表示在各區(qū)開設分店的個數(shù),y表示這個x個分店的年收入之和.

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合yx的關系,求y關于x的線性回歸方程

(2)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)xy之間的關系為,請結(jié)合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?

(參考公式:,其中,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內(nèi),動點與兩定點, 連線的斜率之積為.

(1)求動點的軌跡的方程;

(2)設點, 是軌跡上相異的兩點.

(Ⅰ)過點, 分別作拋物線的切線, , 兩條切線相交于點,證明: ;

(Ⅱ)若直線與直線的斜率之積為,證明: 為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案