【題目】已知向量 , ,設(shè)函數(shù) .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)在 中,邊 分別是角 的對(duì)邊,角 為銳角,若
, 的面積為 ,求邊 的長(zhǎng).

【答案】
(1)解:

,得

的單調(diào)遞增區(qū)間為


(2)解:

又A為銳角,∴ ,

S△ABC= , ∴


【解析】(1)由題意利用向量的數(shù)量積坐標(biāo)運(yùn)算公式可求出 f ( x )的解析式,再根據(jù)兩角和差的公式整理化簡(jiǎn)為同名的三角函數(shù),結(jié)合正弦函數(shù)的單調(diào)性即可求出單調(diào)遞增區(qū)間。(2)根據(jù)已知整理原式再利用二倍角公式可得出cos A的值進(jìn)而得到角A的值,然后利用三角形面積公式求出bc再由余弦定理求出a的值。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解兩角和與差的余弦公式(兩角和與差的余弦公式:),還要掌握二倍角的余弦公式(二倍角的余弦公式:)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m、n、s、t∈R* , m+n=3, 其中m、n是常數(shù)且m<n,若s+t的最小值 是 ,滿足條件的點(diǎn)(m,n)是橢圓 一弦的中點(diǎn),則此弦所在的直線方程為(
A.x﹣2y+3=0
B.4x﹣2y﹣3=0
C.x+y﹣3=0
D.2x+y﹣4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)正六棱柱的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】咖啡館配制兩種飲料,甲種飲料每杯分別用奶粉、咖啡、糖9g、4g、3g;乙種飲料每杯分別用奶粉、咖啡、糖4g、5g、10g,已知每天使用原料限額為奶粉3600g,咖啡2000g,糖3000g,如果甲種飲料每杯能獲利0.7元,乙種飲料每杯能獲利1.2元,每天在原料使用的限額內(nèi),飲料能全部售完,問(wèn)咖啡館每天怎樣安排配制飲料獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某校語(yǔ)言類(lèi)專(zhuān)業(yè)N名畢業(yè)生的綜合測(cè)評(píng)成績(jī)(百分制)分布直方圖,已知80~90分?jǐn)?shù)段的學(xué)員數(shù)為21人. (Ⅰ)求該專(zhuān)業(yè)畢業(yè)總?cè)藬?shù)N和90~95分?jǐn)?shù)段內(nèi)的人數(shù)n;
(Ⅱ)現(xiàn)欲將90~95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 ,在下列四個(gè)命題紅,正確命題的個(gè)數(shù)( )
①若 ②若 ,則
③若 ,則 ④若 ,則
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列 的前 項(xiàng)和為 ,且 ,數(shù)列 為等差數(shù)列,且 .
(1)求
(2)求數(shù)列 的前 項(xiàng)和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镽,導(dǎo)函數(shù)f'(x)的圖象如圖所示,則函數(shù)f(x)(
A.無(wú)極大值點(diǎn),有四個(gè)極小值點(diǎn)
B.有三個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)
C.有兩個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)
D.有四個(gè)極大值點(diǎn),無(wú)極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明:已知a,b均為有理數(shù),且 都是無(wú)理數(shù),求證: 是無(wú)理數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案