【題目】對(duì)于雙曲線:(),若點(diǎn)滿足,則稱在的外部;若點(diǎn)滿足,則稱在的內(nèi)部.
(1)若直線上點(diǎn)都在的外部,求的取值范圍;
(2)若過點(diǎn),圓()在內(nèi)部及上的點(diǎn)構(gòu)成的圓弧長等于該圓周長的一半,求、滿足的關(guān)系式及的取值范圍;
(3)若曲線()上的點(diǎn)都在的外部,求的取值范圍.
【答案】(1);(2),;(3).
【解析】
(1)直線上點(diǎn)都在的外部等價(jià)于不等式的解為一切實(shí)數(shù),轉(zhuǎn)化為恒成立問題從而求解;
(2)根據(jù)對(duì)稱性,只需要考慮這兩個(gè)曲線在第一象限及、軸正半軸的情況,由此可得兩曲線的交點(diǎn)坐標(biāo)為,將點(diǎn)和代入雙曲線得到兩個(gè)方程,然后將看成已知數(shù),解出,根據(jù),解出的范圍;
(3)先將曲線()轉(zhuǎn)化為,根據(jù)所有點(diǎn)都在的外部,可以得到不等式對(duì)任意非零實(shí)數(shù)均成立,令,轉(zhuǎn)化為函數(shù)進(jìn)行分類討論,求解最值,從而得出的取值范圍.
解:(1)由題意,因?yàn)橹本上點(diǎn)都在的外部,
所以直線上點(diǎn)滿足,
即求不等式的解為一切實(shí)數(shù)時(shí)的取值范圍.
對(duì)于不等式,
當(dāng)時(shí),不等式的解集不為一切實(shí)數(shù),
于是有解得.
故的取值范圍為.
(2)因?yàn)閳A和雙曲線均關(guān)于坐標(biāo)軸和原點(diǎn)對(duì)稱,
所以只需考慮這兩個(gè)曲線在第一象限及、軸正半軸的情況.
由題設(shè),圓與雙曲線的交點(diǎn)平分該圓在第一象限內(nèi)的圓弧,
它們交點(diǎn)的坐標(biāo)為.
將,代入雙曲線方程,
得(*),
又因?yàn)?/span>過點(diǎn),
所以,
將代入(*)式,
得.
由,
解得.
因此,的取值范圍為.
(3)由,
得.
將代入,
因?yàn)榍()上的點(diǎn)都在的外部,
所以不等式對(duì)任意非零實(shí)數(shù)均成立,
其中.
令,設(shè),().
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,不恒成立;
當(dāng)時(shí),,
函數(shù)的最大值為,
因?yàn)?/span>,所以;
當(dāng)時(shí),.
綜上,,解得.
因此,的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餅屋進(jìn)行為期天的五周年店慶活動(dòng),現(xiàn)策劃兩項(xiàng)有獎(jiǎng)促銷活動(dòng),活動(dòng)一:店慶期間每位顧客一次性消費(fèi)滿元,可得元代金券一張;活動(dòng)二:活動(dòng)期間每位顧客每天有一次機(jī)會(huì)獲得一個(gè)一元或兩元紅包.根據(jù)前一年該店的銷售情況,統(tǒng)計(jì)了位顧客一次性消費(fèi)的金額數(shù)(元),頻數(shù)分布表如下圖所示:
一次性消費(fèi)金額數(shù) | |||||
人數(shù) |
以這位顧客一次消費(fèi)金額數(shù)的頻率分布代替每位顧客一次消費(fèi)金額數(shù)的概率分布.
(1)預(yù)計(jì)該店每天的客流量為人次,求這次店慶期間,商家每天送出代金券金額數(shù)的期望;
(2)假設(shè)顧客獲得一元或兩元紅包的可能性相等,商家在店慶活動(dòng)結(jié)束后會(huì)公布幸運(yùn)數(shù)字,連續(xù)元的“店慶幸運(yùn)紅包”一個(gè).若公布的幸運(yùn)數(shù)字是“”,求店慶期間一位連續(xù)天消費(fèi)的顧客獲得紅包金額總數(shù)的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過曲線的焦點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.設(shè)數(shù)列的前n項(xiàng)和為且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)若求正整數(shù)的值;
(3)是否存在正整數(shù),使得恰好為數(shù)列的一項(xiàng)?若存在,求出所有滿足條件的正整數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理)已知數(shù)列滿足(),首項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,是△ABC的內(nèi)角,若對(duì)于任意恒成立,求角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線是雙曲線的一條漸近線,點(diǎn)在雙曲線C上,設(shè)坐標(biāo)原點(diǎn)為O.
(1)求雙曲線C的方程;
(2)若過點(diǎn)的直線l與雙曲線C交于R、S兩點(diǎn),若,求直線l的方程;
(3)設(shè)在雙曲線上,且直線AM與y軸相交于點(diǎn)P,點(diǎn)M關(guān)于y軸對(duì)稱的點(diǎn)為N,直線AN與y軸相交于點(diǎn)Q,問:在x軸上是否存在定點(diǎn)T,使得?若存在,求出點(diǎn)T的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得,則稱是“H數(shù)列”;
(1)若數(shù)列的前n項(xiàng)和(),判斷數(shù)列是否是“H數(shù)列”?若是,給出證明;若不是,說明理由;
(2)設(shè)數(shù)列是常數(shù)列,證明:為“H數(shù)列”的充要條件是;
(3)設(shè)是等差數(shù)列,其首項(xiàng),公差,若是“H數(shù)列”,求d的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)是函數(shù)數(shù)的導(dǎo)函數(shù),記,若在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù),求證:對(duì)任意實(shí)數(shù),總有成立.
附:簡單復(fù)合函數(shù)求導(dǎo)法則為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com