【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),且的周長(zhǎng)為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過(guò)點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得是以為底邊的等腰三角形若存在,求點(diǎn)橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:(),過(guò)原點(diǎn)的兩條直線和分別與交于點(diǎn)、和、,得到平行四邊形.
(1)若,,且為正方形,求該正方形的面積.
(2)若直線的方程為,和關(guān)于軸對(duì)稱,上任意一點(diǎn)到和的距離分別為和,證明:.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿足.
①存在可以生成的數(shù)列是常數(shù)數(shù)列;
②“數(shù)列中存在某一項(xiàng)”是“數(shù)列為有窮數(shù)列”的充要條件;
③若為單調(diào)遞增數(shù)列,則的取值范圍是;
④只要,其中,則一定存在;
其中正確命題的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,,,的前項(xiàng)和為,且滿足().
(1)試求數(shù)列的通項(xiàng)公式;
(2)令,是的前項(xiàng)和,證明:;
(3)證明:對(duì)任意給定的,均存在,使得時(shí),(2)中的恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足S1>1,且(nN*).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn;
(3)設(shè)*(為正整數(shù)),問(wèn)是否存在正整數(shù),使得當(dāng)任意正整數(shù)n>N時(shí)恒有Cn>2015成立?若存在,請(qǐng)求出正整數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與它到直線的距離的比值為,設(shè)動(dòng)點(diǎn)形成的軌跡為曲線..
(1)求曲線的方程;
(2)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),過(guò)點(diǎn)作,垂足為,過(guò)點(diǎn)作,垂足為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿足.又曲線上的點(diǎn)A、B滿足.
(1)求曲線的方程;
(2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);
(3)求證:原點(diǎn)到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列 的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為,,, ;,,,;,…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值;
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,().
(1)計(jì)算,,,,并求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;
(3)由數(shù)列的項(xiàng)組成一個(gè)新數(shù)列:,,,,,設(shè)為數(shù)列的前項(xiàng)和,試求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com