【題目】已知函數(shù)。
(1)若是曲線的切線,求的值;
(2)若,求的取值范圍.
【答案】(1)(2)
【解析】
法一:(1)根據(jù)題意,設(shè)切點的坐標(biāo)為(x1,y1),求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義分析可得,解可得a的值,即可得答案;
(2)根據(jù)題意,f(x)≥1+x+lnx即x(e2x﹣a)≥1+x+lnx,結(jié)合x的取值范圍變形可得a+1≤e2x,設(shè)F(x)=e2x,利用導(dǎo)數(shù)分析F(x)在(0,+∞)上的最小值,據(jù)此分析可得答案.
法二:(1)同解法一. (2)設(shè),求導(dǎo)后,先研究a=1時導(dǎo)函數(shù)的最小值,從而得到結(jié)論成立,再研究a>1和a<1時情況,利用變換主元的方法進行放縮后分別說明成立及不成立.
法三:(1)同解法一.
(2)先考查函數(shù),通過導(dǎo)函數(shù)證明,利用此引理進行放縮,分 及去證明,分別去證明成立與說明不成立,得到a的范圍.
解法一:(1)因為,所以,
設(shè)直線與的圖象的切點為,
則.①
因為切點既在切線上又在曲線上,所以
由①②③得.
(2)由題意得,即,
因為,所以,
設(shè),則.
考查函數(shù),
因為,所以在單調(diào)遞增.
又因為,且,
故存在,使得,即,
所以當(dāng)時,,,單調(diào)遞減;
當(dāng)時,,,單調(diào)遞增.
所以.
由題意得,.令,取對數(shù)得,④
由,得,⑤……
由④⑤得,
設(shè)函數(shù),則有,
因為在單調(diào)遞增,
所以,即,
所以,故,解得.
故的取值范圍是.
解法二:(1)同解法一.
(2)設(shè),,
則.
①當(dāng)時,令,
,
設(shè),.因為,
所以在單調(diào)遞增,又因為,,
故存在,使得,
所以,兩邊取對數(shù)得.,
所以當(dāng),,,單調(diào)遞減.
,,,單調(diào)遞增.
所以.
即時,有.所以符合題意,
②當(dāng)時,因為,
所以,
由①知,存在,使得,
所以不符合題意.
③當(dāng)時,,符合題意.,
綜上,的取值范圍是.
解法三:(1)同解法一.
(2)考查函數(shù),因為,所以當(dāng)時,,
當(dāng)時,;當(dāng)時,,
所以在單調(diào)遞減,在單調(diào)遞增.
所以.
①當(dāng),即時,因為,
所以,符合題意;
②當(dāng),即時,設(shè),
因為,所以,
令,考察.
因為,所以在單調(diào)遞增.
因為,,
故存在,使得,即,
所以存在,使得,
因為,故存在,使得,
所以不符合題意.
綜上,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為120的樣本,測量樹苗高度(單位:,經(jīng)統(tǒng)計,其高度均在區(qū)間,內(nèi),將其按,,,,,,,,,,,分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中的值,并估計這批樹苗的平均高度(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)已知所抽取的這120棵樹苗來自于,兩個試驗區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,過點作與軸平行的直線,點為動點在直線上的投影,且滿足.
(1)求動點的軌跡的方程;
(2)已知點為曲線上的一點,且曲線在點處的切線為,若與直線相交于點,試探究在軸上是否存在點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知在上單調(diào)遞減,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級過濾,使用壽命為十年.如圖所示,兩個一級過濾器采用并聯(lián)安裝,二級過濾器與三級過濾器為串聯(lián)安裝。
其中每一級過濾都由核心部件濾芯來實現(xiàn)。在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立),三級濾芯無需更換,若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個元,二級濾芯每個元.若客戶在使用過程中單獨購買濾芯,則一級濾芯每個元,二級濾芯每個元,F(xiàn)需決策安裝凈水系統(tǒng)的同時購濾芯的數(shù)量,為此參考了根據(jù)套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖是根據(jù)個一級過濾器更換的濾芯個數(shù)制成的柱狀圖,表是根據(jù)個二級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表.
二級濾芯更換頻數(shù)分布表
二級濾芯更換的個數(shù) | ||
頻數(shù) |
以個一級過濾器更換濾芯的頻率代替個一級過濾器更換濾芯發(fā)生的概率,以個二級過濾器更換濾芯的頻率代替個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記,分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定,的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩名籃球運動員某賽季一些場次得分的莖葉圖,其中莖為十位數(shù),葉為個位數(shù),甲、乙兩人得分的中位數(shù)為X甲、X乙,則下列判斷正確的是( )
A. X乙﹣X甲=5,甲比乙得分穩(wěn)定
B. X乙﹣X甲=5,乙比甲得分穩(wěn)定
C. X乙﹣X甲=10,甲比乙得分穩(wěn)定
D. X乙﹣X甲=10,乙比甲得分穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點C(t∈R,t≠0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com