【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,其年齡頻率分布直方圖如圖所示,

(1)求圖中的值并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@20名中采用簡(jiǎn)單隨機(jī)抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及均值.

【答案】(1) ,年齡在歲的人數(shù)為;(2)答案見解析.

【解析】試題分析:(I)由直方圖求出x,即可求出年齡在[35,40)歲的人數(shù);(II)用分層抽樣的方法,從中選取20名,則其中年齡低于35的人有12名,年齡不低于35的人有8名.計(jì)算出總的基本事件數(shù)與事件包含的基本事件數(shù)即可得出概率.

解析:

(1)∵小矩形的面積等于頻率,

∴除外的頻率和為0.70,

.

故500名志愿者中,年齡在歲的人數(shù)為(人).

(2)用分層抽樣的方法,從中選取20名,則其中年齡“低于35歲”的人有12名,“年齡不低于35歲”的人有8名.

的可能取值為0,1,2,3,

, ,

, ,

的分布列為

X

0

1

2

3

P

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的標(biāo)準(zhǔn)方程是.

(1)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(2)直線過(guò)已知拋物線的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】朱載堉(1536~1611),是中國(guó)明代一位杰出的音樂(lè)家、數(shù)學(xué)家和天文歷算家,他的著作《律學(xué)新說(shuō)》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一組音(八度)分成十二個(gè)半音音程的律制,各相鄰兩律之間的頻率之比完全相等,亦稱“十二等程律”.即一個(gè)八度13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音是最初那個(gè)音的頻率的2倍.設(shè)第三個(gè)音的頻率為,第七個(gè)音的頻率為,則

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1與圓C2相交于AB兩點(diǎn),

(1)求公共弦AB所在的直線方程;

(2)求圓心在直線上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱錐D﹣ABC側(cè)棱兩兩垂直,E為棱AD中點(diǎn),平面α過(guò)點(diǎn)A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,則m,n所成角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過(guò)點(diǎn),直線軸于,且, 為坐標(biāo)原點(diǎn).

1)求橢圓的方程;

2)設(shè)是橢圓的上頂點(diǎn),過(guò)點(diǎn)分別作直線交橢圓兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1,其前n項(xiàng)和為Sn,且Snan+1 (n∈N*).

(1)求anSn;

(2)設(shè)bn=log2(2Sn+1)-2,數(shù)列{cn}滿足cn·bn+3·bn+4=1+(n+1)(n+2)·2bn,數(shù)列{cn}的前n項(xiàng)和為Tn,求使4Tn>2n+1成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在四棱錐P﹣ABCD中,側(cè)面PAD底面ABCD,側(cè)棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).

(1) 求直線PB與平面POC所成角的余弦值;

(2)線段上是否存在一點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.數(shù)列 滿足 ,且,前11項(xiàng)和為.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè)是否存在,使得成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案