已知,,且直線與曲線相切.
(1)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(2)(。┊(dāng)時,求最大的正整數(shù),使得任意個實數(shù)(是自然對數(shù)的底數(shù))都有成立;
(ⅱ)求證:.
(1);(2)(。13;(ⅱ)詳見解析.
解析試題分析:(1)由直線與曲線相切可以求出中的參數(shù).再由對內(nèi)的一切實數(shù),不等式恒成立,即在上恒成立,然后構(gòu)造函數(shù),研究其導(dǎo)函數(shù)以確定其單調(diào)性,從而得到其最小值1.又,所以實數(shù)的取值范圍是;(2)(。┫韧ㄟ^導(dǎo)函數(shù)確定在上是增函數(shù),從而得到在上的最大值.由題意,必須使得不等式左邊的最大值小于或等于右邊的最小值.經(jīng)計算知時不等式右邊取得最小值,然后代入不等式,解得.因此,的最大值為;(ⅱ)根據(jù)(1)的推導(dǎo)時,,從而,再通過令代入化簡即可得證.
試題解析:(1)設(shè)點為直線與曲線的切點,則有
. (*)
,. (**)
由(*)、(**)兩式,解得,. 1分
由整理,得,
,要使不等式恒成立,必須恒成立. 2分
設(shè),,
,當(dāng)時,,則是增函數(shù),
,是增函數(shù),,.
因此,實數(shù)的取值范圍是. 4分
(2)(。┊(dāng)時,,
,在上是增函數(shù),在上的最大值為.
要對內(nèi)的任意個實數(shù)都有
成立,必須使得不等式左邊的最大值小于或等于右邊的最小值,
當(dāng)時不等式左邊取得最大值,時不等式右邊取得最小值.
,解得.因此,的最大值為. 8分
(ⅱ)證明:當(dāng)時,根據(jù)(1)的推導(dǎo)有,時,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=。
(1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值;
(3)在(1)的條件下,設(shè)=+,
求證: (),參考數(shù)據(jù):。(13分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進(jìn)行開發(fā)建設(shè),陰影部分為一公共設(shè)施不能建設(shè)開發(fā),且要求用欄柵隔開(欄柵要求在直線上),公共設(shè)施邊界為曲線的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,切曲線于點P,設(shè).
(I)將(O為坐標(biāo)原點)的面積S表示成f的函數(shù)S(t);
(II)若,S(t)取得最小值,求此時a的值及S(t)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(),其中.
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,求函數(shù)的極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,求證:當(dāng)時,;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中是實數(shù)).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且有兩個極值點,求的取值范圍.
(其中是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的極大值和極小值;
(Ⅱ)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)其中為自然對數(shù)的底數(shù), .
(1)設(shè),求函數(shù)的最值;
(2)若對于任意的,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù):
(1)討論函數(shù)的單調(diào)性;
(2)若對于任意的,若函數(shù)在 區(qū)間上有最值,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com