【題目】若奇函數(shù)f(x)在(0,+∞)上是增函數(shù),且f(﹣1)=0,則不等式xf(x)>0的解集是

【答案】{x|0<x<1或﹣1<x<0}
【解析】解:由f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù),得f(x)在(﹣∞,0)也是減函數(shù),
又f(﹣1)=0,∴f(1)=﹣f(﹣1)=0,
作出f(x)的草圖,如圖所示:
由圖象可得,xf(x)>0 0<x<1或﹣1<x<0,
∴xf(x)>0的解集為:{x|0<x<1或﹣1<x<0},
所以答案是:{x|0<x<1或﹣1<x<0}.

【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的頂點(diǎn)與焦點(diǎn)分別是橢圓 =1(a>b>0)的焦點(diǎn)與頂點(diǎn),若雙曲線的兩條漸近線與橢圓的交點(diǎn)構(gòu)成的四邊形恰為正方形,則橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x+2)2+y2=1,P(x,y)為圓C上任一點(diǎn),
(1)求 的最大、最小值;
(2)求x﹣2y的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且時, ,則函數(shù)為自然對數(shù)的底數(shù))的零點(diǎn)個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)在給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;

(2)寫出f(x)的單調(diào)遞增區(qū)間和最值及取得最值時x的值(不需要證明);
(3)若方程f(x)﹣a=0,有三個實(shí)數(shù)根,求a的取 值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?

購買意愿強(qiáng)

購買意愿弱

合計

20~40歲

大于40歲

合計

(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+ (x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個實(shí)根;
(3)若F(x)=﹣f(x)+4x+c,存在實(shí)數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】值域?yàn)椋?,+∞)的函數(shù)是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下結(jié)論正確的是(
A.若a<b且c<d,則ac<bd
B.若ac2>bc2 , 則a>b
C.若a>b,c<d,則a﹣c<b﹣d
D.若0<a<b,集合A={x|x= },B={x|x= },則A?B

查看答案和解析>>

同步練習(xí)冊答案