【題目】某公司為了預測下月產(chǎn)品銷售情況,找出了近7個月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量(萬件) |
但其中數(shù)據(jù)污損不清,經(jīng)查證,,.
(1)請用相關系數(shù)說明銷售量與月份代碼有很強的線性相關關系;
(2)求關于的回歸方程(系數(shù)精確到0.01);
(3)公司經(jīng)營期間的廣告宣傳費(單位:萬元)(),每件產(chǎn)品的銷售價為10元,預測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)
參考公式及數(shù)據(jù):,相關系數(shù),當時認為兩個變量有很強的線性相關關系,回歸方程中斜率和截距的最小二乘估計公式分別為,.
科目:高中數(shù)學 來源: 題型:
【題目】對于由有限個自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n個元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個數(shù)最少的集合A.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓長軸是短軸的倍,且右焦點為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)直線交橢圓于兩點,若線段中點的橫坐標為,求直線的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表,經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關關系.
價格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)上表給出的數(shù)據(jù),求出y與x的線性回歸方程;
(2)利用(1)中的回歸方程,當價格元/kg時,日需求量y的預測值為多少?
(參考公式:線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,點,為直線:上的動點,過作的垂線,該垂線與線段的垂直平分線交于點,記的軌跡為.
(1)求的方程;
(2)若過的直線與曲線交于,兩點,直線,與直線分別交于,兩點,試判斷以為直徑的圓是否經(jīng)過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”;如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比,已知橢圓.
(1)若橢圓,判斷與相似?如果相似,求出與的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且焦點在軸上,短半軸長為的橢圓的標準方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍;
(3)如圖:直線與兩個“相似橢圓”和分別交于點和點,試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使和組成以為相似比的兩個相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過坐標原點的兩條直線與橢圓:分別相交于點、和點、,其中直線經(jīng)過的左焦點,直線經(jīng)過的右焦點.當直線不垂直于坐標軸時,與的斜率乘積為.
(1)求橢圓的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,圓.
(Ⅰ)是拋物線的焦點,是拋物線上的定點,,求拋物線的方程;
(Ⅱ)在(Ⅰ)的條件下,過點的直線與圓相切,設直線交拋物線于,兩點,則在軸上是否存在點使?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com