【題目】已知函數(shù)f(x)=|2x-1|+|x+m|.
(l)當m=l時,解不等式f(x)≥3;
(2)證明:對任意x∈R,2f(x)≥|m+1|-|m|.
【答案】(1){x|x≤-1或x≥1};(2)見解析
【解析】
(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解,最后求并集,(2)根據(jù)絕對值三角不等式放縮論證.
(1)當m=1時,f(x)=|2x-1|+|x+1|,
①當x≤-1時,f(x)=-3x≥3,解得x≤-1,
②當-1<x<時,f(x)=-x+2≥3,解得x≤-1,與-1<x<矛盾,舍去,
③當x≥時,f(x)=3x≥3,解得x≥1,
綜上,不等式f(x)<3的解集為{x|x≤-1或x≥1};
(2)2f(x)=|4x-2|+|2x+2m|=|2x-1|+|2x-1|+|2x+2m|≥|2x-1|+|2x+2m|≥|2x+2m-2x+1|
=|2m+1|=|(m+1)+m|≥|m+1|-|m|,
∴對任意x∈R,2f(x)≥|m+1|-|m|.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,短軸的一個端點到焦點的距離為.
(1)求橢圓的方程;
(2),是橢圓上的兩點,線段的中點在直線上,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓,過動點M(0,m)的直線交x軸于點N,交橢圓C于A,P(其中P在第一象限,N在橢圓內(nèi)),且M是線段PN的中點,點P關于x軸的對稱點為Q,延長QM交C于點B,記直線PM,QM的斜率分別為k1,k2.
(1)當時,求k2的值;
(2)當時,求直線AB斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大;
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,、是離心率為的橢圓:的左、右焦點,過作軸的垂線交橢圓所得弦長為,設、是橢圓上的兩個動點,線段的中垂線與橢圓交于、兩點,線段的中點的橫坐標為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,平面PAC垂直圓O所在平面,直線PC與圓O所在平面所成角為60°,PA⊥PC.
(1)證明:AP⊥平面PBC
(2)求二面角P—AB一C的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設表示不大于實數(shù)的最大整數(shù),函數(shù),若關于的方程有且只有5個解,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點為,,上、下頂點為,,記四邊形的內(nèi)切圓為.
(1)求圓的標準方程;
(2)已知圓的一條不與坐標軸平行的切線交橢圓于P,M兩點.
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com