【題目】已知橢圓:的離心率,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2),是橢圓上的兩點(diǎn),線段的中點(diǎn)在直線上,求直線的斜率的取值范圍.
【答案】(1);(2).
【解析】
(1)利用短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離可得,結(jié)合離心率可得方程;
(2)聯(lián)立方程結(jié)合韋達(dá)定理可求AB的中點(diǎn),進(jìn)而可得斜率的范圍.
解:(1)由已知得橢圓的離心率為,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為,
解得,,
所以橢圓的方程為.
(2)當(dāng)直線的斜率不存在時(shí),直線的中點(diǎn)在直線上,符合題意;
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,點(diǎn) ,
將直線的方程與橢圓方程聯(lián)立并化簡(jiǎn),得,
由韋達(dá)定理得,,
,化簡(jiǎn)得.
由線段的中點(diǎn)在直線上,得,
故,即,即,
代入,得,
解得或.
因此,直線的斜率的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng),,且,關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列前n項(xiàng)和為,且其中m為實(shí)常數(shù), 且.
(1)求證:是等比數(shù)列;
(2)若數(shù)列的公比滿(mǎn)足且,,求證:數(shù)列 是等差數(shù)列,并求的通項(xiàng)公式;
(3)若時(shí),設(shè),求數(shù)列的前n和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠抽取了一臺(tái)設(shè)備在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測(cè)量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.
(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這臺(tái)設(shè)備在正常狀態(tài)下生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差.任取一個(gè)產(chǎn)品,記其質(zhì)量指標(biāo)值為.若,則認(rèn)為該產(chǎn)品為一等品;,則認(rèn)為該產(chǎn)品為二等品;若,則認(rèn)為該產(chǎn)品為不合格品.已知設(shè)備正常狀態(tài)下每天生產(chǎn)這種產(chǎn)品1000個(gè).
(i)用樣本估計(jì)總體,問(wèn)該工廠一天生產(chǎn)的產(chǎn)品中不合格品是否超過(guò)?
(ii)某公司向該工廠推出以舊換新活動(dòng),補(bǔ)足50萬(wàn)元即可用設(shè)備換得生產(chǎn)相同產(chǎn)品的改進(jìn)設(shè)備.經(jīng)測(cè)試,設(shè)備正常狀態(tài)下每天生產(chǎn)產(chǎn)品1200個(gè),生產(chǎn)的產(chǎn)品為一等品的概率是,二等品的概率是,不合格品的概率是.若工廠生產(chǎn)一個(gè)一等品可獲得利潤(rùn)50元,生產(chǎn)一個(gè)二等品可獲得利潤(rùn)30元,生產(chǎn)一個(gè)不合格品虧損40元,試為工廠做出決策,是否需要換購(gòu)設(shè)備?
參考數(shù)據(jù):①;②;③,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:1左右焦點(diǎn)為F1,F2直線(1)xy0與該橢圓有一個(gè)公共點(diǎn)在y軸上,另一個(gè)公共點(diǎn)的坐標(biāo)為(m,1).
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上任一點(diǎn),過(guò)焦點(diǎn)F1,F2的弦分別為PM,PN,設(shè)λ1λ2,求λ1+λ2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語(yǔ)音月卡套餐,為了解通話時(shí)長(zhǎng),采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(zhǎng)(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x+m|.
(l)當(dāng)m=l時(shí),解不等式f(x)≥3;
(2)證明:對(duì)任意x∈R,2f(x)≥|m+1|-|m|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com