已知函數是奇函數,(其中)
(1)求實數m的值;
(2)在時,討論函數f(x)的增減性;
(3)當x時,f(x)的值域是(1,),求n與a的值。
(1);(2)與上都是增函數;(3).
解析試題分析:(1)奇函數對應的是,由此可求出;(2)對函數,判斷它的單調性,應先求出定義域,然后在定義域的兩個區(qū)間與上分別用單調性的定義來說明函數的單調性,這里可以先討論對數的真數的單調性,如設,,判斷出這個差是正數后,即得,而由于,則有,于是可得函數在上是遞增的;(3)已知條件是函數的值域是,因此我們可以由值域來求自變量的取值范圍,即,由于,不等式可轉化為,故,這就應該是已知的范圍,從而有,,可得結論.
試題解析:(1) 4分
(2)由(1),定義域為. 5分
討論在上函數的單調性.
任取、,設,令,則,,
所以
因為,,,所以,,
所以. 7分
又當時,是減函數,所以.由定義知在上函數是增函數. 8分
又因為函數是奇函數,所以在上函數也是增函數. 9分
(3)當時,要使的值域是,則,所以,即, 11分
而,上式化為,又,所以當時,;當時,; 13分
因而,欲使的值域是,必須,所以對上述不等式,當且僅當時成立,所以解得,
科目:高中數學 來源: 題型:解答題
已知函數f(x)對任意實數x均有f(x)=kf(x+2),其中常數k為負數,且f (x)在區(qū)間[0,2]上有表達式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)寫出f(x)在[-3,3]上的表達式,并討論函數f(x)在[-3,3]上的單調性;
(3)求出f(x)在[-3,3]上的最小值與最大值,并求出相應的自變量的取值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某化工企業(yè)2012年底投入100萬元購入一套污水處理設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.設該企業(yè)使用該設備x年的年平均污水處理費用為y(單元:萬元).
(1)用x表示y;
(2)當該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設備.求該企業(yè)幾年后需要重新更換新的污水處理設備.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=loga(x+1)(a>1),若函數y=g(x)的圖象上任意一點P關于原點對稱的點Q的軌跡恰好是函數f(x)的圖象.
(1)寫出函數g(x)的解析式;
(2)當x∈[0,1)時總有f(x)+g(x)≥m成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
兩城相距,在兩地之間距城處地建一核電站給兩城供電.為保證城市安全,核電站距城市距離不得少于.已知供電費用(元)與供電距離()的平方和供電量(億度)之積成正比,比例系數,若城供電量為億度/月,城為億度/月.
(Ⅰ)把月供電總費用表示成的函數,并求定義域;
(Ⅱ)核電站建在距城多遠,才能使供電費用最小,最小費用是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設命題p:f(x)=在區(qū)間(1,+∞)上是減函數;命題q:x1,x2是方程x2-ax-2=0的兩個實根,且不等式m2+5m-3≥|x1-x2|對任意的實數a∈[-1,1]恒成立.若p∧q為真,試求實數m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com