為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

(1)f(x)=20×+6x+6x(0≤x≤10)(2)5 cm厚,70萬元

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=的圖象與函數(shù)y=kx-2的圖象恰有兩個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=loga(3-ax).
(1)當(dāng)x∈[0,2]時(shí),函數(shù)f(x)恒有意義,求實(shí)數(shù)a的取值范圍.
(2)是否存在這樣的實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1?如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實(shí)數(shù)a的取值范圍.
(2)設(shè)g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,P1(x1,y1),P2(x2,y2),…,Pn(xnyn)(0<y1y2<…<yn)是曲線Cy2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
 
(1)寫出a1,a2a3;
(2)求出點(diǎn)An(an,0)(n∈N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場對A品牌的商品進(jìn)行了市場調(diào)查,預(yù)計(jì)2012年從1月起前x個(gè)月顧客對A品牌的商品的需求總量P(x)件與月份x的近似關(guān)系是:
P(x)=x(x+1)(41-2x)(x≤12且x∈N*)
(1)寫出第x月的需求量f(x)的表達(dá)式;
(2)若第x月的銷售量g(x)=
(單位:件),每件利潤q(x)元與月份x的近似關(guān)系為:q(x)=,問:該商場銷售A品牌商品,預(yù)計(jì)第幾月的月利潤達(dá)到最大值?月利潤最大值是多少?(e6≈403)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是奇函數(shù),(其中)
(1)求實(shí)數(shù)m的值;
(2)在時(shí),討論函數(shù)f(x)的增減性;
(3)當(dāng)x時(shí),f(x)的值域是(1,),求n與a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算
(1)
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(Ⅱ)若對任意,都有成立,且函數(shù)的圖象經(jīng)過點(diǎn),
的值.

查看答案和解析>>

同步練習(xí)冊答案