【題目】已知雙曲線C的焦點(diǎn)與拋物線的焦點(diǎn)之間的距離為2,且C的離心率為,則下列說法正確的有( ).

A.C的漸近線方程為B.C的標(biāo)準(zhǔn)方程為

C.C的頂點(diǎn)到漸近線的距離為D.曲線經(jīng)過C的一個(gè)焦點(diǎn)

【答案】ABD

【解析】

求出拋物線的焦點(diǎn)坐標(biāo),設(shè)出雙曲線的一個(gè)焦點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)間距離公式,結(jié)合雙曲線離心率公式求出雙曲線中的,最后對(duì)四個(gè)選項(xiàng)逐一判斷即可.

設(shè)拋物線的焦點(diǎn)為,雙曲線C的一個(gè)焦點(diǎn)坐標(biāo)為:,

由題意可知:,所以有(舍去),

又因?yàn)?/span>C的離心率為,所以.

選項(xiàng)A:因?yàn)?/span> ,所以C的漸近線方程為,故本選項(xiàng)說法正確;

選項(xiàng)B:因?yàn)?/span>,所以C的標(biāo)準(zhǔn)方程為,故本選項(xiàng)說法正確;

選項(xiàng)C:設(shè)C的一個(gè)頂點(diǎn)坐標(biāo)為,它到漸近線方程為的距離為:

,根據(jù)雙曲線和漸近線的對(duì)稱性可知:C的頂點(diǎn)到漸近線的距離為,故本選項(xiàng)的說法不正確.

選項(xiàng)D:當(dāng)時(shí),,而恰好是雙曲線的一個(gè)焦點(diǎn),因此本選項(xiàng)的說法正確.

故選:ABD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中有一題:今有牛、馬、羊食人苗,苗主責(zé)之粟四斗.羊主曰:我羊食半馬.馬主曰:我馬食半牛.今欲衰償之,問各出幾何?其意是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償4斗粟,羊主人說:我羊所吃的禾苗只有馬的一半.馬主人說:我馬所吃的禾苗只有牛的一半.打算按此比率償還,牛、馬、羊的主人各應(yīng)賠償多少粟?在這個(gè)問題中,牛主人比羊主人多賠償了多少斗(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,討論關(guān)于x的方程在區(qū)間上實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個(gè).問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性

(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】武漢出現(xiàn)的新型冠狀病毒是一種可以通過飛沫傳播的變異病毒,某藥物研究所為篩查該新型冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,每份樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),則需要檢驗(yàn)n次;②混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份血液全為陰性,因此這k份血液樣本檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對(duì)這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陰性還是陽性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份為陽性,若采取逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;

2)現(xiàn)取其中份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

i)試運(yùn)用概率統(tǒng)計(jì)知識(shí),若,試求P關(guān)于k的函數(shù)關(guān)系式;

ii)若,采用混合檢驗(yàn)方式可以使得這k份血液樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在疫情這一特殊時(shí)期,教育行政部門部署了停課不停學(xué)的行動(dòng),全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績(jī)與在線學(xué)習(xí)數(shù)學(xué)時(shí)長(zhǎng)之間的相關(guān)關(guān)系,對(duì)在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)是不超過1小時(shí)的,得到了如下的等高條形圖:

)是否有的把握認(rèn)為高三學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其在線學(xué)習(xí)時(shí)長(zhǎng)有關(guān);

)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績(jī)超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時(shí)長(zhǎng)超過1小時(shí)的人數(shù)的數(shù)學(xué)期望和方差.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)解,則的取值范圍是  

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案